AP Physics First Semester Exam Review

Motion

Graphs of motion
-Moving from one to the other
Definitions

- Average and Instantaneous

Constant acceleration equations

- Lists, coordinate systems

Projectile motion

- Up, at top, down
- accelerations and velocities

Relative motion

- Straight-line

Circular Motion

Example Problems:

1. Describe the motion given in the following graph and sketch the other graphs.

2. A particle's motion can be described by the equation $x=2 t^{3}-t$.
a. What is the instantaneous velocity at $\mathrm{t}=3$ seconds?
b. What is the average velocity from 1 to 3 seconds?
c. What is the equation for the velocity of particle?
d. What is the equation for the acceleration of the particle?
3. A ball is launched with a velocity of $25 \mathrm{~m} / \mathrm{s} 30^{\circ}$ above the horizontal. Find the position, components of velocity, and acceleration at 1 second, 2 seconds and at the top of the motion.
4. Person 1 is running $7 \mathrm{~m} / \mathrm{s}$ away from person 2. Person 2 throws a ball $30 \mathrm{~m} / \mathrm{s}$ at 25° above the horizontal in the direction of person 1.
a. What is the horizontal velocity of the ball with respect to person 1 ?
b. How far will the ball travel horizontally before it returns to the height from which it was released?
c. How far away should person 1 be when person 2 releases the ball?

Forces

Newton's Laws
Force Diagrams
Two body problems

- Elevators
- Two blocks connected by a string (tension and acceleration)

Ramp problems
Friction

- Static/Kinetic

Circular Motion

- Bottom of swing
- Top of loop

Example Problems:

1. At one point in an elevator ride, a 70 kg person has an apparent weight of 600 N . Describe the possible motions of the elevator.
2. Two blocks are connected over a pulley. Mass A is 5 kg , while mass B is 3 kg . What is the acceleration and the tension in the rope?
3. What is the acceleration for the block if there is a coefficient of kinetic friction of 0.1 and the ramp is inclined to 30 degrees?

4. What is the tension in a 3 meter rope if a 60 kg person is traveling $4 \mathrm{~m} / \mathrm{s}$ at the bottom of a swing?
5. What is the normal force on a 50 kg rider in a roller coaster at the top of a loop with a radius of 5 meters? The speed of the roller coaster is $15 \mathrm{~m} / \mathrm{s}$.

Energy

Work
Conservation of Energy

- Slides / Roller Coasters
- Swings
- Springs

Potential energy curves
Non-conservative forces

Example Problems:

1. A 10 kg block is pushed vertically with a force of 150 N through a distance of 2 meters.
a. What is the work done by the force?
b. What is the speed of the block at the top of the motion if it started from rest?
2. A 200 kg roller coaster car is traveling $2 \mathrm{~m} / \mathrm{s}$ at the top of the first hill. At the bottom of the hill it is traveling $35 \mathrm{~m} / \mathrm{s}$. It is then raised to half the height of the first hill and brought to rest by the brakes.
a. What is the height of the first hill?
b. How much energy is dissipated by the braking system?
3. A 5 kg block falls 2 meters before it hits a $300 \mathrm{~N} / \mathrm{m}$ spring.
a. What is the compression of the spring when the block has its maximum speed?
b. What is the maximum compression of the spring?
4. What force would cause the following potential energy function: $U=3 r^{2}-4 / r$
5. A 5 kg block is sliding along a horizontal surface at $4 \mathrm{~m} / \mathrm{s}$ when it encounters a surface with a coefficient of kinetic friction 0.4 . How far will the block travel before it is brought to rest?

Momentum

Center of mass
Impulse
Explosions
Collisions

- Elastic
- Inelastic
- Completely Inelastic

Example Problems:

1. A 5 kg block traveling $3 \mathrm{~m} / \mathrm{s}$ is 2 meters away from a 4 kg block that is traveling $6 \mathrm{~m} / \mathrm{s}$ in the opposite direction.
a. What is the position of the center of mass at that time?
b. If the collision is completely inelastic, what is the final speed for each block?
c. What is the impulse on the 5 kg block?
2. A 10 kg block explodes into three pieces. A 3 kg piece travels $15 \mathrm{~m} / \mathrm{s}$ along the +x -axis. A 2 kg piece travels $20 \mathrm{~m} / \mathrm{s}$ along the -y -axis. What is the final velocity of the remaining piece?
3. A 3 kg block is traveling $2 \mathrm{~m} / \mathrm{s}$ to the right when it collides with a 1 kg block which was at rest. After the collision, the 3 kg block travels $1 \mathrm{~m} / \mathrm{s}$ to the right.
a. What is the speed of the 1 kg block?
b. What type of collision is this?
