
1. The magnitude of the force of one particle on the other is given by F = Gm1m2/r2,
where m1 and m2 are the masses, r is their separation, and G is the universal gravitational 
constant. We solve for r:

( )( )( )11 2 2
1 2
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6.67 10 N m / kg 5.2kg 2.4kg
19m

2.3 10 N
Gm mr

F

−

−

× ⋅
= = =
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.



2. We use subscripts s, e, and m for the Sun, Earth and Moon, respectively. Plugging in 
the numerical values (say, from Appendix C) we find 

2 22 30 8

2 24 11

/ 1.99 10 kg 3.82 10  m 2.16.
/ 5.98 10 kg 1.50 10  m

sm s m sm s em

em e m em e sm

F Gm m r m r
F Gm m r m r

× ×= = = =
× ×



3. The gravitational force between the two parts is 

( ) ( )2
2 2= =

Gm M m GF mM m
r r

−
−

which we differentiate with respect to m and set equal to zero: 

( )2= 0 = 2 = 2dF G M m M m
dm r

− .

This leads to the result m/M= 1/2. 



(a) The ratio of the moon’s gravitational pulls at the two different positions is 

2 22 8 6
1

2 8 6
0

/( ) 3.82 10  m 6.37 10  m 1.06898.
/( ) 3.82 10  m 6.37 10  m
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Therefore, the increase is 0.06898, or approximately, 6.9%. 

(b) The change of the gravitational pull may be approximated as 

1 0 2 2 2 2 3

41 2 1 2 .
( ) ( )

m m m m m EE E

ME E ME E ME ME ME ME ME

GM m GM m GM m GM m GM mRR RF F
R R R R R R R R R

− = − ≈ + − − =
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On the other hand, your weight, as measured on a scale on Earth is

2
E

g E
E

GM mF mg
R

= = .

Since the moon pulls you “up,” the percentage decrease of weight is  

3 322 6
7 51 0

24 8

7.36 10 kg 6.37 10  m4 4 2.27 10 (2.3 10 )%.
5.98 10 kg 3.82 10  m

m E
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F F M R
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4. The gravitational force between you and the moon at its initial position (directly 
opposite of Earth from you) is 

0 2( )
m

ME E

GM mF
R R

=
+

where mM  is the mass of the moon, MER  is the distance between the moon and the Earth, 
and ER  is the radius of the Earth. At its final position (directly above you), the 
gravitational force between you and the moon is 

1 2( )
m

ME E

GM mF
R R

=
−

.



5. We require the magnitude of force (given by Eq. 13-1) exerted by particle C on A be 
equal to that exerted by B on A.  Thus, 

GmA mC
r2   = 

GmA mB
d2   . 

We substitute in mB = 3mA   and mB = 3mA, and (after canceling “mA”) solve for r. We 
find r = 5d.  Thus, particle C is placed on the x axis, to left of particle A (so it is at a 
negative value of x), at x = –5.00d.



6. Using F = GmM/r2, we find that the topmost mass pulls upward on the one at the 
origin with 1.9 × 10−8 N, and the rightmost mass pulls rightward on the one at the origin 
with 1.0 × 10−8 N. Thus, the (x, y) components of the net force, which can be converted to 
polar components (here we use magnitude-angle notation), are 

( ) ( )8 8 8
net = 1.04 10 ,1.85 10 2.13 10 60.6 .F − − −× × × ∠ °

(a) The magnitude of the force is 2.13 × 10−8 N. 

(b) The direction of the force relative to the +x axis is 60.6° .



7. At the point where the forces balance 2 2
1 2/ /e sGM m r GM m r= , where Me is the mass of 

Earth, Ms is the mass of the Sun, m is the mass of the space probe, r1 is the distance from 
the center of Earth to the probe, and r2 is the distance from the center of the Sun to the 
probe. We substitute r2 = d − r1, where d is the distance from the center of Earth to the 
center of the Sun, to find 

( )2 2
1 1

= .e sM M
r d r−

Taking the positive square root of both sides, we solve for r1. A little algebra yields 

( )9 24
8

1 30 24

150 10  m 5.98 10  kg
= = = 2.60 10  m.

+ 1.99 10  kg + 5.98 10  kg
e

s e

d M
r

M M

× ×
×

× ×

Values for Me, Ms, and d can be found in Appendix C. 



8. The gravitational forces on m5 from the two 5.00g masses m1 and m4 cancel each other. 
Contributions to the net force on m5 come from the remaining two masses: 

( )( )( )
( )

11 2 2 3 3 3

net 2
1

14

6.67 10  N m /kg 2.50 10  kg 3.00 10  kg 1.00 10  kg

2 10  m

1.67 10  N.

F
− − − −

−

−

× ⋅ × × − ×
=

×

= ×

The force is directed along the diagonal between m2 and m3, towards m2. In unit-vector 
notation, we have 

14 14
net net

ˆ ˆ ˆ ˆ(cos 45 i sin 45 j) (1.18 10 N) i  (1.18 10 N) jF F − −= ° + ° = × + ×



9. The gravitational force from Earth on you (with mass m) is  

2
E

g
E

GM mF mg
R

= =

where 2 2/ 9.8 m/s .E Eg GM R= =  If r is the distance between you and a tiny black hole of 
mass 111 10 kgbM = ×  that has the same gravitational pull on you as the Earth, then 

2 .b
g

GM mF mg
r

= =

Combining the two equations, we obtain  

11 3 2 11

2 2 2

(6.67 10  m /kg s )(1 10 kg) 0.8 m.
9.8 m/s

b bE

E

GM m GMGM mmg r
R r g

−× ⋅ ×= = = = ≈



10. (a) We are told the value of the force when particle C is removed (that is, as its 
position x goes to infinity), which is a situation in which any force caused by C vanishes 
(because Eq. 13-1 has r2 in the denominator).  Thus, this situation only involves the force 
exerted by A on B:

GmA mB
(0.20 m)2  = 4.17 × 10−10  N . 

Since mB = 1.0 kg, then this yields mA = 0.25 kg. 

(b) We note (from the graph) that the net force on B is zero when x = 0.40 m.  Thus, at 
that point, the force exerted by C must have the same magnitude (but opposite direction) 
as the force exerted by A (which is the one discussed in part (a)).  Therefore 
        

GmC mB
(0.40 m)2  = 4.17 × 10−10  N mC = 1.00 kg. 



11. (a) The distance between any of the spheres at the corners and the sphere at the center 
is

/ 2cos30 / 3r = ° =

where  is the length of one side of the equilateral triangle. The net (downward) 
contribution caused by the two bottom-most spheres (each of mass m) to the total force 
on m4 has magnitude 

4 4
2 22 = 2 sin 30 = 3 .y

Gm m Gm mF
r

°

This must equal the magnitude of the pull from M, so 

( )
4 4

223
/ 3

Gm m Gm m=

which readily yields m = M.

(b) Since m4 cancels in that last step, then the amount of mass in the center sphere is not 
relevant to the problem. The net force is still zero. 



30.0º = 150º (measured ccw from the +x axis).  The component along, say, the x axis of 
one of the force-vectors F

→
  is simply Fx/r in this situation (where F is the magnitude of 

F
→

 ).  Since the force itself (see Eq. 13-1) is inversely proportional to r2 then the 
aforementioned x component would have the form GmMx/r3; similarly for the other 
components. With mA = 0.0060 kg, mB = 0.0120 kg, and mC = 0.0080 kg, we therefore 
have

Fnet x = 
GmAmB xB

rB
3   +  

GmAmC xC
rC

3   = (2.77 × 10−14 N)cos(−163.8º) 

and

Fnet y = 
GmAmB yB

rB
3   +  

GmAmC yC
rC

3  = (2.77 × 10−14 N)sin(−163.8º) 

where rB = dAB = 0.50 m, and (xB, yB) = (rBcos(150º), rBsin(150º)) (with SI units 
understood).  A fairly quick way to solve for rC is to consider the vector difference 
between the net force and the force exerted by A, and then employ the Pythagorean 
theorem.  This yields rC = 0.40 m. 

(a) By solving the above equations, the x coordinate of particle C is xC = −0.20 m. 

(b) Similarly, the y coordinate of particle C is yC = −0.35 m. 

12. All the forces are being evaluated at the origin (since particle A is there), and all 
forces (except the net force) are along the location-vectors  r

→
  which  point to particles B

and C.  We note that the angle for the location-vector pointing to particle B is 180º – 



( ) ( )1 2 2 22 2

11 3 2

2 2 2 2 2

9

1 1 1= = = 1
8 /2 8 1 /2

(6.67 10  m /s kg)(2.95 kg)(0.431 kg) 11
(9.00 10 m) 8[1 (4 10 m) /(2 9 10 m)]
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GMmF F F GMm
d dd R R d

−

− − −

−

− − −
− −

× ⋅= −
× − × ⋅ ×

= ×

13. If the lead sphere were not hollowed the magnitude of the force it exerts on m would 
be F1 = GMm/d2. Part of this force is due to material that is removed. We calculate the 
force exerted on m by a sphere that just fills the cavity, at the position of the cavity, and 
subtract it from the force of the solid sphere. 

The cavity has a radius r = R/2. The material that fills it has the same density (mass to 
volume ratio) as the solid sphere. That is Mc/r3= M/R3, where Mc is the mass that fills the 
cavity. The common factor 4π/3 has been canceled. Thus, 

3 3

3 3= = = .
8 8c

r R MM M M
R R

The center of the cavity is d − r = d − R/2 from m, so the force it exerts on m is 

( )
( )2 2

/8
= .

/2
G M m

F
d R−

The force of the hollowed sphere on m is 



14. Using Eq. 13-1, we find 

FAB
→

 = 
2GmA

2

d2   j^       and FAC
→

=  – 
4GmA

2

3d2   i^  . 

Since the vector sum of all three forces must be zero, we find the third force (using 
magnitude-angle notation) is  

FAD
→

 = 
GmA

2

d2  (2.404   ∠   –56.3º) . 

This tells us immediately the direction of the vector  r
→

  (pointing from the origin to 
particle D), but to find its magnitude we must solve (with mD = 4mA) the following 
equation:

2.404
GmA

2

d2   = 
GmAmD

r2    . 

This yields r = 1.29d.  In magnitude-angle notation, then,  r
→

  = (1.29  ∠   –56.3º) , with 
SI units understood. The “exact” answer without regard to significant figure 
considerations is 

                                r
→

  =  (  2
6

13 13
  ,  –3

6
13 13

   ) . 

(a) In (x, y) notation, the x coordinate is x =0.716d.

(b) Similarly, the y coordinate is y = −1.07d.



GmA mB zB
rB

3  = 
GmA(2mA)(2d)

((2d)2 + d2 + (2d)2)3  = 
4GmA

2

27 d2  . 

In this way, each component can be written as some multiple of GmA
2/d2.  For the z

component of the force exerted on particle A by particle C, that multiple is –9 14 /196. 
For the x components of the forces exerted on particle A by particles B and C, those 
multiples are 4/27 and  –3 14 /196, respectively.  And for the y components of the forces 
exerted on particle A by particles B and C, those multiples are 2/27 and 3 14 /98, 
respectively.  To find the distance r to particle D one method is to solve (using the fact 
that the vector add to zero) 

GmAmD
r2

2

  = [(4/27 –3 14 /196)2 + (2/27 +3 14 /98)2 + (4/27 –9 14 /196)2]
GmA

2

d2

2

(where mD = 4mA) for r. This gives r = 4.357d.  The individual values of x, y and z
(locating the particle D) can then be found by considering each component of the 
GmAmD/r2 force separately.

(a) The x component of r would be

GmA mD x/r3 = –(4/27 –3 14 /196)GmA
2/d2,

which yields x = –1.88d.

(b) Similarly, y = −3.90d,

(c) and z = 0.489d.

In this way we are able to deduce that (x, y, z) = (1.88d, 3.90d, 0.49d).

15. All the forces are being evaluated at the origin (since particle A is there), and all 
forces are along the location-vectors  r

→
  which point to particles B, C and D. In three 

dimensions, the Pythagorean theorem becomes r = x2 + y2 + z2  .   The component along, 
say, the x axis of one of the force-vectors F

→
  is simply Fx/r in this situation (where F is 

the magnitude of F
→

 ).  Since the force itself (see Eq. 13-1) is inversely proportional to r2

then the aforementioned x component would have the form GmMx/r3; similarly for the 
other components.  For example, the z component of the force exerted on particle A by 
particle B is 



16. Since the rod is an extended object, we cannot apply Equation 13-1 directly to find 
the force. Instead, we consider a small differential element of the rod, of mass dm  of 
thickness dr  at a distance r from 1m . The gravitational force between dm  and 1m is

1 1
2 2

( / )Gm dm Gm M L drdF
r r

= = ,

where we have substituted ( / )dm M L dr=  since 
mass is uniformly distributed. The direction of 
dF  is to the right (see figure). The total force 
can be found by integrating over the entire length of the rod: 

1 1 1
2

1 1
( )

L d

d

Gm M Gm M Gm MdrF dF
L r L L d d d L d

+
= = = − − =

+ +
.

Substituting the values given in the problem statement, we obtain 

11 3 2
101 (6.67 10  m /kg s )(0.67 kg)(5.0 kg) 3.0 10 N.

( ) (0.23 m)(3.0 m 0.23 m)
Gm MF

d L d

−
−× ⋅= = = ×

+ +



17. The acceleration due to gravity is given by ag = GM/r2, where M is the mass of Earth 
and r is the distance from Earth’s center. We substitute r = R + h, where R is the radius 
of Earth and h is the altitude, to obtain ag = GM /(R + h)2. We solve for h and obtain 

/ gh GM a R= − . According to Appendix C, R = 6.37 × 106 m and M = 5.98 × 1024 kg, 
so

( )( )
( )

11 3 2 24
6 6

2

6.67 10 m / s kg 5.98 10 kg
6.37 10 m 2.6 10 m.

4.9m / s
h

−× ⋅ ×
= − × = ×



18. We follow the method shown in Sample Problem 13-3. Thus, 

2 3= = 2E E
g g

GM GMa da dr
r r

−

which implies that the change in weight is 

( )top bottom .gW W m da− ≈

But since Wbottom = GmME/R2 (where R is Earth’s mean radius), we have 

( )
3

bottom3 6

1.61 10  m= 2 = 2 = 2 600 N 0.303 N
6.37 10  m

E
g

GmM drmda dr W
R R

×− − − = −
×

for the weight change (the minus sign indicating that it is a decrease in W). We are not 
including any effects due to the Earth’s rotation (as treated in Eq. 13-13). 



19. (a) The gravitational acceleration at the surface of the Moon is gmoon = 1.67 m/s2 (see 
Appendix C). The ratio of weights (for a given mass) is the ratio of g-values, so  

Wmoon = (100 N)(1.67/9.8) = 17 N. 

(b) For the force on that object caused by Earth’s gravity to equal 17 N, then the free-fall 
acceleration at its location must be ag = 1.67 m/s2. Thus, 

7
2 1.5 10 mE E

g
g

Gm Gma r
r a

= = = ×

so the object would need to be a distance of r/RE = 2.4 “radii” from Earth’s center. 



20. The free-body diagram of the force acting on the plumb line is shown on the right. 
The mass of the sphere is 

3 3 3 3 3

13

4 4 (2.6 10 kg/m )(2.00 10  m)
3 3

8.71 10 kg.

M V Rπ πρ ρ= = = × ×

= ×

The force between the “spherical” mountain and the plumb 
line is 2/F GMm r= . Suppose at equilibrium the line makes 
an angle θ  with the vertical and the net force acting on the 
line is zero. Therefore, 

net, 2

net,

0 sin sin

0 cos

x

y

GMmF T F T
r

F T mg

θ θ= = − = −

= = −

The two equations can be combined to give 2tan F GM
mg gr

θ = = . The distance the lower 

end moves toward the sphere is  

11 3 2 13

2 3 2

6

(6.67 10  m /kg s )(8.71 10 kg)tan (0.50 m)
(9.8)(3 2.00 10  m)

8.2 10  m.

GMx l l
gr

θ
−

−

× ⋅ ×= = =
× ×

= ×

.



21. (a) The gravitational acceleration is 2
2= = 7.6 m/s .g

GMa
R

(b) Note that the total mass is 5M. Thus, ( )
( )

2
2

5
= = 4.2 m/s .

3
g

G M
a

R



(d) This part refers specifically to the very large black hole treated in the previous part. 
With that mass for M in Eq. 13–16, and r = 2.002GM/c2, we obtain 

( ) ( ) ( )
6

3 3 22

2= 2 =
2.0022.002 /

g
GM cda dr dr

GMGM c
− −

where dr → 1.70 m as in Sample Problem 13-3. This yields (in absolute value) an 
acceleration difference of 7.30 × 10−15 m/s2.

(e) The miniscule result of the previous part implies that, in this case, any effects due to 
the differences of gravitational forces on the body are negligible. 

22. (a) Plugging Rh = 2GMh /c2 into the indicated expression, we find 

( ) ( ) ( ) ( )
4

2 2 22 2

1= = =
1.001 2.0021.001 2 /

h h
g

hh h

GM GM ca
MR GGM c

which yields ag = (3.02 × 1043 kg·m/s2) /Mh.

(b) Since Mh is in the denominator of the above result, ag decreases as Mh increases. 

(c) With Mh = (1.55 × 1012) (1.99 × 1030 kg), we obtain ag = 9.82 m/s2.



23. From Eq. 13-14, we see the extreme case is when “g” becomes zero, and plugging in 
Eq. 13-15 leads to 

3 2
2

20 = = .GM RR M
R G

ωω−

Thus, with R = 20000 m and ω = 2π rad/s, we find M = 4.7 × 1024 kg ≈ 5 × 1024 kg. 



24. (a) What contributes to the GmM/r2 force on m is the (spherically distributed) mass M
contained within r (where r is measured from the center of M). At point A we see that M1
+ M2 is at a smaller radius than r = a and thus contributes to the force: 

( )1 2
on 2 .m

G M M m
F

a
+

=

(b) In the case r = b, only M1 is contained within that radius, so the force on m becomes 
GM1m/b2.

(c) If the particle is at C, then no other mass is at smaller radius and the gravitational 
force on it is zero. 



M = (1.93 × 1024 kg + 4.01 × 1024 kg ) = 5.94 × 1024 kg. 

The first term is the mass of the core and the second is the mass of the mantle. Thus, 

( )( )
( )

11 3 2 24
2

26

6.67 10  m /s kg 5.94 10  kg
= = 9.84 m/s .

6.345 10  m
ga

−× ⋅ ×

×

(c) A point 25 km below the surface is at the mantle-crust interface and is on the surface 
of a sphere with a radius of R = 6.345 × 106 m. Since the mass is now assumed to be 
uniformly distributed the mass within this sphere can be found by multiplying the mass 
per unit volume by the volume of the sphere: 3 3( / ) ,e eM R R M=  where Me is the total 
mass of Earth and Re is the radius of Earth. Thus, 

( )
36

24 24
6

6.345 10  m= 5.98 10  kg = 5.91 10  kg.
6.37 10  m

M × × ×
×

The acceleration due to gravity is 

( )( )
( )

11 3 2 24
2

22 6

6.67 10  m /s kg 5.91 10  kg
= = = 9.79 m/s .

6.345 10  m
g

GMa
R

−× ⋅ ×

×

25. (a) The magnitude of the force on a particle with mass m at the surface of Earth is 
given by F = GMm/R2, where M is the total mass of Earth and R is Earth’s radius. The 
acceleration due to gravity is 

( )( )
( )

11 3 2 24
2

22 6

6.67 10  m /s kg 5.98 10  kg
= = = = 9.83 m/s .

6.37 10  m
g

F GMa
m R

−× ⋅ ×

×

(b) Now ag = GM/R2, where M is the total mass contained in the core and mantle together 
and R is the outer radius of the mantle (6.345 × 106 m, according to Fig. 13-43). The total 
mass is  



26. (a) Using Eq. 13-1, we set GmM/r2  equal to  
1
2 GmM/R2, and we find r = R 2 .  Thus, 

the distance from the surface is  ( 2  – 1)R = 0.414R.

(b) Setting the density ρ equal to M/V where V = 
4
3 πR3, we use Eq. 13-19: 

3 3 2

4 4 1 / 2.
3 3 4 / 3 2

Gmr Gmr M GMmr GMmF r R
R R R

π ρ π
π

= = = = =



( )7total
on 2 3.0 10 N/kg .m

GmMF m
r

−= = ×

(b) At r = 0.50 m, the portion of the sphere at radius smaller than that is 

3 34= = 1.3 10  kg.
3

M rρ π ×

Thus, the force on m has magnitude GMm/r2 = m (3.3 × 10−7 N/kg). 

(c) Pursuing the calculation of part (b) algebraically, we find 

( )34
3 7

on 2

N6.7 10 .
kg mm

Gm r
F mr

r
ρ π

−= = ×
⋅

27. Using the fact that the volume of a sphere is 4πR3/3, we find the density of the sphere: 

( )
4

3 3total
334 4

3 3

1.0 10 kg 2.4 10 kg/m .
1.0 m

M
R

ρ
π π

×= = = ×

When the particle of mass m (upon which the sphere, or parts of it, are exerting a 
gravitational force) is at radius r (measured from the center of the sphere), then whatever 
mass M is at a radius less than r must contribute to the magnitude of that force (GMm/r2).

(a) At r = 1.5 m, all of Mtotal is at a smaller radius and thus all contributes to the force: 



28. The difference between free-fall acceleration g and the gravitational acceleration ga
at the equator of the star is (see Equation 13.14): 

2
ga g Rω− =

where
2 2 153rad/s

0.041sT
π πω = = =

is the angular speed of the star. The gravitational acceleration at the equator is 

11 3 2 30
11 2

2 4 2

(6.67 10  m /kg s )(1.98 10 kg) 9.17 10 m/s .
(1.2 10  m)g

GMa
R

−× ⋅ ×= = = ×
×

Therefore, the percentage difference is  

2 2 4
4

11 2

(153rad/s) (1.2 10  m) 3.06 10 0.031%.
9.17 10 m/s

g

g g

a g R
a a

ω −− ×= = = × ≈
×



(b) The value of ag at the surface of a planet is given by ag = GM/R2, so the value for 
Mars is 

( )
22 4

2 2
2 3

0.65 10  km= = 0.11 9.8 m/s = 3.8 m/s .
3.45 10  km

M E
g g E

E M

M Ra M a
M R

×
×

(c) If v is the escape speed, then, for a particle of mass m

21 2= .
2

mM GMmv G v
R R

=

For Mars, the escape speed is 

( )( )11 3 2 24
3

6

2(6.67 10  m /s kg) 0.11 5.98 10  kg
= 5.0 10  m/s.

3.45 10  m
v

−× ⋅ ×
= ×

×

29. (a) The density of a uniform sphere is given by ρ = 3M/4πR3, where M is its mass and 
R is its radius. The ratio of the density of Mars to the density of Earth is 

33 4

3 3

0.65 10  km= = 0.11 = 0.74.
3.45 10  km

M M E

E E M

M R
M R

ρ
ρ

×
×



30. (a) The gravitational potential energy is 

( )( )( )11 3 2
11

6.67 10  m /s kg 5.2 kg 2.4 kg
= = =  4.4 10  J.

19 m
GMmU

r

−
−

× ⋅
− − − ×

(b) Since the change in potential energy is 

( )11 112= = 4.4 10  J = 2.9 10  J,
3 3

GMm GMmU
r r

− −Δ − − − − − × ×

the work done by the gravitational force is W = − ΔU = −2.9 × 10−11 J. 

(c) The work done by you is W´ = ΔU = 2.9 × 10−11 J. 



31. The amount of (kinetic) energy needed to escape is the same as the (absolute value of 
the) gravitational potential energy at its original position. Thus, an object of mass m on a 
planet of mass M and radius R needs K = GmM/R in order to (barely) escape. 
(a) Setting up the ratio, we find 

= = 0.0451m m E

E E m

K M R
K M R

using the values found in Appendix C. 

(b) Similarly, for the Jupiter escape energy (divided by that for Earth) we obtain 

= = 28.5.J J E

E E J

K M R
K M R



32. (a) The potential energy at the surface is (according to the graph) –5.0 × 109 J, so 
(since U is inversely proportional to r – see Eq. 13-21) at an r-value a factor of 5/4 times 
what it was at the surface then U must be a factor of 4/5 what it was.  Thus, at r = 1.25Rs
U = – 4.0 × 109 J.  Since mechanical energy is assumed to be conserved in this problem, 
we have K + U = –2.0 × 109 J at this point.  Since U = – 4.0 × 109 J here, then 

92.0 10 JK = ×  at this point. 

(b) To reach the point where the mechanical energy equals the potential energy (that is, 
where U = – 2.0 × 109 J) means that U must reduce (from its value at r = 1.25Rs) by a 
factor of 2 – which means the r value must increase (relative to r = 1.25Rs) by a 
corresponding factor of 2.  Thus, the turning point must be at r = 2.5Rs .



33. The equation immediately preceding Eq. 13-28 shows that  K = –U (with U evaluated 
at the planet’s surface: –5.0 × 109 J) is required to “escape.”  Thus, K = 5.0 × 109 J. 



34. The gravitational potential energy is 

( ) ( )2= =
Gm M m GU Mm m

r r
−

− − −

which we differentiate with respect to m and set equal to zero (in order to minimize). 
Thus, we find M − 2m = 0 which leads to the ratio m/M = 1/2 to obtain the least potential 
energy.

Note that a second derivative of U with respect to m would lead to a positive result 
regardless of the value of m − which means its graph is everywhere concave upward and 
thus its extremum is indeed a minimum. 



11 3 2

1 1 1 1

2 2 2( )
( ) ( ) ( )

0.12 m 2(0.040 m)(6.67 10 m / s kg) (0.010 kg)(0.080 kg 0.020 kg)
(0.040 m)(0.12 0.040 m)

5.0 10

f i B A C

B A C B A C

W U U Gm m m
d L d L d d

L d d L L dGm m m Gm m m
d L d d L d d L d

−

= − = − + −
− −

− − −= + = −
− − −

−= × ⋅ −
−

= + × 13 J.−

(b) The work done by the force of gravity is −(Uf − Ui) = −5.0 × 10−13 J. 

35. (a) The work done by you in moving the sphere of mass mB equals the change in the 
potential energy of the three-sphere system. The initial potential energy is 

A C B CA B
i

Gm m Gm mGm mU
d L L d

= − − −
−

and the final potential energy is 

.A C B CA B
f

Gm m Gm mGm mU
L d L d

= − − −
−

The work done is 



36. (a) From Eq. 13-28, we see that 0 / 2 Ev GM R=  in this problem.  Using energy 
conservation, we have 

1
2 mvo

2 – GMm/RE = – GMm/r

which yields r = 4RE/3. So the multiple of RE is 4/3 or 1.33. 

(b) Using the equation in the textbook immediately preceding Eq. 13-28, we see that in 
this problem we have Ki = GMm/2RE, and the above manipulation (using energy 
conservation) in this case leads to r = 2RE. So the multiple of RE is 2.00. 

(c) Again referring to the equation in the textbook immediately preceding Eq. 13-28, we 
see that the mechanical energy = 0 for the “escape condition.”  



37. (a) We use the principle of conservation of energy. Initially the particle is at the 
surface of the asteroid and has potential energy Ui = −GMm/R, where M is the mass of 
the asteroid, R is its radius, and m is the mass of the particle being fired upward. The 
initial kinetic energy is 21

2 mv . The particle just escapes if its kinetic energy is zero when 
it is infinitely far from the asteroid. The final potential and kinetic energies are both zero. 
Conservation of energy yields

−GMm/R + ½mv2 = 0. 

We replace GM/R with agR, where ag is the acceleration due to gravity at the surface. 
Then, the energy equation becomes −agR + ½v2 = 0. We solve for v:

2 3 32 2(3.0 m/s ) (500 10 m) 1.7 10 m/s.gv a R= = × = ×

(b) Initially the particle is at the surface; the potential energy is Ui = −GMm/R and the 
kinetic energy is Ki = ½mv2. Suppose the particle is a distance h above the surface when it 
momentarily comes to rest. The final potential energy is Uf = −GMm/(R + h) and the final 
kinetic energy is Kf = 0. Conservation of energy yields 

21 .
2

GMm GMmmv
R R h

− + = −
+

We replace GM with agR2 and cancel m in the energy equation to obtain 

2
21 .

2 ( )
g

g

a R
a R v

R h
− + = −

+
The solution for h is 

2 2 3 2
3

2 2 3 2

5

2 2(3.0 m/s ) (500 10 m) (500 10 m)
2 2(3.0 m/s ) (500 10 m) (1000 m/s)

2.5 10 m.

g

g

a R
h R

a R v
×= − = − ×

− × −

= ×

(c) Initially the particle is a distance h above the surface and is at rest. Its potential energy 
is Ui = −GMm/(R + h) and its initial kinetic energy is Ki = 0. Just before it hits the 
asteroid its potential energy is Uf = −GMm/R. Write 21

2 fmv  for the final kinetic energy. 
Conservation of energy yields 

21 .
2

GMm GMm mv
R h R

− = − +
+



We substitute agR2 for GM and cancel m, obtaining 

2
21 .

2
g

g

a R
a R v

R h
− = − +

+
The solution for v is 

2 2 3 2
2 3

3 3

3

2 2(3.0 m/s )(500 10 m)2 2(3.0 m/s ) (500 10 m)
(500 10 m) +(1000 10 m)

1.4 10 m/s.

g
g

a R
v a R

R h
×= − = × −

+ × ×

= ×



7
2 1

2 1

1 1 2.2 10 J.K K GmM
r r

= + − = ×

(b) In this case, we require K2 = 0 and r2 = 8.0 × 106 m, and solve for K1:

7
1 2

1 2

1 1 6.9 10 J.K K GmM
r r

= + − = ×

38. Energy conservation for this situation may be expressed as follows: 

1 1 2 2 1 2
1 2

GmM GmMK U K U K K
r r

+ = + − = − .

where M = 5.0 × 1023 kg, r1 = R = 3.0 × 106 m and m = 10 kg. 

(a) If K1 = 5.0 × 107 J and r2 = 4.0 × 106 m, then the above equation leads to 



39. (a) The momentum of the two-star system is conserved, and since the stars have the 
same mass, their speeds and kinetic energies are the same. We use the principle of 
conservation of energy. The initial potential energy is Ui = −GM2/ri, where M is the mass 
of either star and ri is their initial center-to-center separation. The initial kinetic energy is 
zero since the stars are at rest. The final potential energy is Uf = −2GM2/ri since the final 
separation is ri/2. We write Mv2 for the final kinetic energy of the system. This is the sum 
of two terms, each of which is ½Mv2. Conservation of energy yields 

2 2
22 .

i i

GM GM Mv
r r

− = − +

The solution for v is 

11 3 2 30
4

10

(6.67 10 m / s kg) (10 kg) 8.2 10 m/s.
10 mi

GMv
r

−× ⋅= = = ×

(b) Now the final separation of the centers is rf = 2R = 2 × 105 m, where R is the radius of 
either of the stars. The final potential energy is given by Uf = −GM2/rf and the energy 
equation becomes −GM2/ri = −GM2/rf + Mv2. The solution for v is 

11 3 2 30
5 10

7

1 1 1 1(6.67 10 m / s kg) (10 kg)
2 10 m 10 m

1.8 10 m/s.

f i

v GM
r r

−= − = × ⋅ −
×

= ×



11 3 2
8 (6.67 10  m /s kg) (20 kg) (10 kg)    1.7 10

0.60 miU K U K
−

− × ⋅= + − × = −

which yields K = 5.6 × 10−9 J. Note that the value of r is the difference between 0.80 m 
and 0.20 m. 

40. (a) The initial gravitational potential energy is 

11 3 2

8 8

(6.67 10  m /s kg) (20 kg) (10 kg)
0.80 m

1.67 10 J 1.7 10 J.

A B
i

i

GM MU
r

−

− −

× ⋅= − = −

= − × ≈ − ×

(b) We use conservation of energy (with Ki = 0): 



41. Let m = 0.020 kg and d = 0.600 m (the original edge-length, in terms of which the 
final edge-length is d/3). The total initial gravitational potential energy (using Eq. 13-21 
and some elementary trigonometry) is 

Ui = – 
4Gm2

d  – 
2Gm2

2 d
  . 

Since U is inversely proportional to r then reducing the size by 1/3 means increasing the 
magnitude of the potential energy by a factor of 3, so 

Uf  = 3Ui ΔU = 2Ui = 2(4 + 2 ) –
Gm2

d   = – 4.82 × 10–13 J . 



42. (a) Applying Eq. 13-21 and the Pythagorean theorem leads to 

U =  – 
GM2

2D  + 
2GmM
y2 + D2

where M is the mass of particle B (also that of particle C) and m is the mass of particle A.
The value given in the problem statement (for infinitely large y, for which the second 
term above vanishes) determines M, since D is given.  Thus M = 0.50 kg. 

(b) We estimate (from the graph) the y = 0 value to be Uo = – 3.5 × 10−10 J.  Using this, 
our expression above determines m.  We obtain m = 1.5 kg. 



43. The period T and orbit radius r are related by the law of periods: T2 = (4π2/GM)r3,
where M is the mass of Mars. The period is 7 h 39 min, which is 2.754 × 104 s. We solve 
for M:

( )
2 3 2 6 3

23
22 11 3 2 4

4 4 (9.4 10 m) 6.5 10 kg.
(6.67 10 m / s kg) 2.754 10 s

rM
GT
π π

−

×= = = ×
× ⋅ ×



(a) For a head-on collision, the relative speed of the two objects must be 2v = 5.4 × 104

km/h. 

(b) A perpendicular collision is possible if one satellite is, say, orbiting above the equator 
and the other is following a longitudinal line. In this case, the relative speed is given by 
the Pythagorean theorem: 2 2ν ν+  = 3.8 × 104 km/h. 

44. From Eq. 13-37, we obtain v = /GM r  for the speed of an object in circular orbit 
(of radius r) around a planet of mass M. In this case, M = 5.98 × 1024 kg and

r = (700 + 6370)m = 7070 km = 7.07 × 106 m. 

The speed is found to be v = 7.51 × 103 m/s. After multiplying by 3600 s/h and dividing 
by 1000 m/km this becomes v = 2.7 × 104 km/h. 



45. Let N be the number of stars in the galaxy, M be the mass of the Sun, and r be the 
radius of the galaxy. The total mass in the galaxy is N M and the magnitude of the 
gravitational force acting on the Sun is F = GNM2/r2. The force points toward the 
galactic center. The magnitude of the Sun’s acceleration is a = v2/R, where v is its speed. 
If T is the period of the Sun’s motion around the galactic center then v = 2πR/T and a = 
4π2R/T2. Newton’s second law yields GNM2/R2 = 4π2MR/T2. The solution for N is 

2 3

2

4 .RN
GT M

π=

The period is 2.5 × 108 y, which is 7.88 × 1015 s, so 

2 20 3
10

11 3 2 15 2 30

4 (2.2 10 m) 5.1 10 .
(6.67 10 m / s kg) (7.88 10 s) (2.0 10 kg)

N π
−

×= = ×
× ⋅ × ×



46. Kepler’s law of periods, expressed as a ratio, is 

3 2 2
3(1.52)

1y
M M M

E E

a T T
a T

= =

where we have substituted the mean-distance (from Sun) ratio for the semi-major axis 
ratio. This yields TM = 1.87 y. The value in Appendix C (1.88 y) is quite close, and the 
small apparent discrepancy is not significant, since a more precise value for the semi-
major axis ratio is aM/aE = 1.523 which does lead to TM = 1.88 y using Kepler’s law. A 
question can be raised regarding the use of a ratio of mean distances for the ratio of semi-
major axes, but this requires a more lengthy discussion of what is meant by a ”mean 
distance” than is appropriate here. 



6 6
66.73 10 m + 6.55 10 m 6.64 10 m.

2 2
a pR R

a
+ × ×= = = ×

(b) The apogee and perigee distances are related to the eccentricity e by Ra = a(1 + e) and 
Rp = a(1 − e). Add to obtain Ra + Rp = 2a and a = (Ra + Rp)/2. Subtract to obtain Ra − Rp
= 2ae. Thus, 

6 6

6 6

6.73 10 m 6.55 10 m 0.0136.
2 6.73 10 m 6.55 10 m

a p a p

a p

R R R R
e

a R R
− − × − ×= = = =

+ × + ×

47. (a) The greatest distance between the satellite and Earth’s center (the apogee distance) 
and the least distance (perigee distance) are, respectively,  

Ra = (6.37 × 106 m + 360 × 103 m) = 6.73 × 106 m 
 Rp = (6.37 × 106 m + 180 × 103 m) = 6.55 × 106 m. 

Here 6.37 × 106 m is the radius of Earth. From Fig. 13-13, we see that the semi-major 
axis is 



48. Kepler’s law of periods, expressed as a ratio, is 

3 2 231
2 1 lunar month

s s s

m m

r T T
r T

= =

which yields Ts = 0.35 lunar month for the period of the satellite. 



49. (a) If r is the radius of the orbit then the magnitude of the gravitational force acting on 
the satellite is given by GMm/r2, where M is the mass of Earth and m is the mass of the 
satellite. The magnitude of the acceleration of the satellite is given by v2/r, where v is its 
speed. Newton’s second law yields GMm/r2 = mv2/r. Since the radius of Earth is 6.37 ×
106 m the orbit radius is r = (6.37 × 106 m + 160 × 103 m) = 6.53 × 106 m. The solution 
for v is 

11 3 2 24
3

6

(6.67 10 m / s kg) (5.98 10 kg) 7.82 10 m/s.
6.53 10 m

GMv
r

−× ⋅ ×= = = ×
×

(b) Since the circumference of the circular orbit is 2πr, the period is 

6
3

3

2 2 (6.53 10 m) 5.25 10 s.
7.82 10 m/s

rT
v
π π ×= = = ×

×

This is equivalent to 87.5 min. 



50. (a) The distance from the center of an ellipse to a focus is ae where a is the semimajor 
axis and e is the eccentricity. Thus, the separation of the foci (in the case of Earth’s orbit) 
is

( ) ( )11 92 2 1.50 10 m 0.0167 5.01 10 m.ae = × = ×

(b) To express this in terms of solar radii (see Appendix C), we set up a ratio: 

9

8

5.01 10 m 7.20.
6.96 10 m

× =
×



51. (a) The period of the comet is 1420 years (and one month), which we convert to T = 
4.48 × 1010 s. Since the mass of the Sun is 1.99 × 1030 kg, then Kepler’s law of periods 
gives

2
10 2 3 13

11 3 2 30

4(4.48 10 s) 1.89 10 m.
(6.67 10  m /kg s )(1.99 10 kg)

a aπ
−× = = ×

× ⋅ ×

(b) Since the distance from the focus (of an ellipse) to its center is ea and the distance 
from center to the aphelion is a, then the comet is at a distance of 

13 13(0.11 1) (1.89 10  m) 2.1 10 mea a+ = + × = ×

when it is farthest from the Sun. To express this in terms of Pluto’s orbital radius (found 
in Appendix C), we set up a ratio: 

13

12

2.1 10 3.6 .
5.9 10 P PR R× =

×



52. To “hover” above Earth (ME = 5.98 × 1024 kg) means that it has a period of 24 hours 
(86400 s). By Kepler’s law of periods, 

2
2 3 74(86400) 4.225 10 m.

E

r r
GM

π= = ×

Its altitude is therefore r − RE (where RE = 6.37 × 106 m) which yields 3.58 × 107 m. 



where TE = 365.25 days is Earth’s orbital period and rE = 1.50 × 1011 m is its mean 
distance from the Sun. In this case, it is perfectly legitimate to take logarithms and obtain 

o2 1log log log
3 3

E E Mr T
a T M

= +

(written to make each term positive) which is the way we plot the data (log (rE/a) on the 
vertical axis and log (TE/T) on the horizontal axis). 

(b) When we perform a least-squares fit to the data, we obtain  

log (rE/a) = 0.666 log (TE/T) + 1.01, 

which confirms the expectation of slope = 2/3 based on the above equation. 

(c) And the 1.01 intercept corresponds to the term 1/3 log (Mo/M) which implies 

3.03o o
310 .

1.07 10
M MM
M

= =
×

Plugging in Mo = 1.99 × 1030 kg (see Appendix C), we obtain M = 1.86 × 1027 kg for 
Jupiter’s mass. This is reasonably consistent with the value 1.90 × 1027 kg found in 
Appendix C. 

53. (a) If we take the logarithm of Kepler’s law of periods, we obtain 

2 22 12 log ( ) = log (4 / ) + 3 log ( )  log ( )  log ( )  log (4 / )
3 3

T GM a a T GMπ π= −

where we are ignoring an important subtlety about units (the arguments of logarithms 
cannot have units, since they are transcendental functions). Although the problem can be 
continued in this way, we prefer to set it up without units, which requires taking a ratio. If 
we divide Kepler’s law (applied to the Jupiter-moon system, where M is mass of Jupiter) 
by the law applied to Earth orbiting the Sun (of mass Mo), we obtain 

3
2 o( / )  =  E

E

M aT T
M r



54. (a) The period is T = 27(3600) = 97200 s, and we are asked to assume that the orbit is 
circular (of radius r = 100000 m). Kepler’s law of periods provides us with an 
approximation to the asteroid’s mass: 

( )
2

32 164(97200) 100000 6.3 10 kg.M
GM

π= = ×

(b) Dividing the mass M by the given volume yields an average density equal to  

ρ = 6.3 × 1016/1.41 × 1013 = 4.4 × 103 kg/m3,

which is about 20% less dense than Earth. 



55. In our system, we have m1 = m2 = M (the mass of our Sun, 1.99 × 1030 kg). With r = 
2r1 in this system (so r1 is one-half the Earth-to-Sun distance r), and v = πr/T for the 
speed, we have 

( )2 2 3
1 2

12

2 .
2

r TGm m rm T
r r GM

π π= =

With r = 1.5 × 1011 m, we obtain T = 2.2 × 107 s. We can express this in terms of Earth-
years, by setting up a ratio: 

( )
7

7

2.2 10 s(1y) = 1 y 0.71 y.
1y 3.156 10 s
TT ×= =

×



3 3 5 3
302

2 11 3 2
1 2

(2.7 10 m/s) (1.70 days)(86400 s/day) 6.90 10 kg
( ) 2 2 (6.67 10  m /kg s )

3.467 ,s

m v T
m m G

M
π π −

×= = = ×
+ × ⋅

=

where 301.99 10 kgsM = ×  is the mass of the sun. With 1 6 sm M= , we write 2 sm Mα=
and solve the following cubic equation for α :

3

2 3.467 0
(6 )

α
α

− =
+

.

The equation has one real solution: 9.3α = , which implies 2 / 9sm M ≈ .

56. The two stars are in circular orbits, not about each other, but about the two-star 
system’s center of mass (denoted as O), which lies along the line connecting the centers 
of the two stars. The gravitational force between the stars provides the centripetal force 
necessary to keep their orbits circular. Thus, for the visible, Newton’s second law gives 

2
1 2 1
2

1

Gm m m vF
r r

= =

where r is the distance between the centers of the stars. To find the relation between r
and 1r , we locate the center of mass relative to 1m . Using Equation 9-1, we obtain 

1 2 2 1 2
1 1

1 2 1 2 2

(0)m m r m r m mr r r
m m m m m

+ += = =
+ +

.

On the other hand, since the orbital speed of 1m  is 12 /v r Tπ= , then 1 / 2r vT π=  and the 
expression for r can be rewritten as   

1 2

2 2
m m vTr

m π
+= .

Substituting r  and 1r  into the force equation, we obtain

2 3
1 2 1
2 2 2

1 2

4 2
( )

Gm m m vF
m m v T T

π π= =
+

or



57. From Kepler’s law of periods (where T = 2.4(3600) = 8640 s), we find the planet’s 
mass M:

2
2 6 3 244(8640s) (8.0 10 m) 4.06 10 kg.M

GM
π= × = ×

But we also know ag = GM/R2 = 8.0 m/s2 so that we are able to solve for the planet’s 
radius:

65.8 10 m.
g

GMR
a

= = ×



111 2 1
2 1 1

2 2

1 3.7 10 m .m m mr r r
m m
+= − = = ×

Dividing this by 1.5 × 1011 m (Earth’s orbital radius, rE) gives r2 = 2.5rE.

58. (a) We make use of 
3 3
2

2
1 2( ) 2

m v T
m m Gπ

=
+

where m1 = 0.9MSun is the estimated mass of the star. With v = 70 m/s and T = 1500 days 
(or 1500 × 86400 = 1.3 × 108 s), we find 

3
232

2
Sun 2

1.06 10 kg .
(0.9 )

m
M m

= ×
+

Since MSun ≈ 2.0 × 1030 kg, we find m2 ≈ 7.0 × 1027 kg. Dividing by the mass of Jupiter 
(see Appendix C), we obtain m ≈ 3.7mJ.

(b) Since v = 2πr1/T is the speed of the star, we find 

8
9

1
(70m/s) (1.3 10 s) 1.4 10 m

2 2
vTr
π π

×= = = ×

for the star’s orbital radius. If r is the distance between the star and the planet, then r2 = r
− r1 is the orbital radius of the planet, and is given by 



59. Each star is attracted toward each of the other two by a force of magnitude GM2/L2,
along the line that joins the stars. The net force on each star has magnitude 2(GM2/L2) cos 
30° and is directed toward the center of the triangle. This is a centripetal force and keeps 
the stars on the same circular orbit if their speeds are appropriate. If R is the radius of the 
orbit, Newton’s second law yields (GM2/L2) cos 30° = Mv2/R.

The stars rotate about their center of mass (marked by a circled dot on the diagram above) 
at the intersection of the perpendicular bisectors of the triangle sides, and the radius of the 
orbit is the distance from a star to the center of mass of the three-star system. We take the 
coordinate system to be as shown in the diagram, with its origin at the left-most star. The 
altitude of an equilateral triangle is ( )3 / 2 L , so the stars are located at x = 0, y = 0; x = 

L, y = 0; and x = L/2, 3 / 2y L= . The x coordinate of the center of mass is xc = (L + 

L/2)/3 = L/2 and the y coordinate is ( )3 / 2 / 3 / 2 3cy L L= = . The distance from a star 

to the center of mass is  

( ) ( )2 2 2 2/ 4 /12 / 3c cR x y L L L= + = + = .

Once the substitution for R is made Newton’s second law becomes 
( )2 2 22 / cos30 3 /GM L Mv L° = . This can be simplified somewhat by recognizing that 

cos 30 3 / 2° = , and we divide the equation by M. Then, GM/L2 = v2/L and 
/v GM L= .



(a) The ratio of potential energies is 

/ 1 .
/ 2

B B A

A A B

U GmM r r
U GmM r r

−= = =
−

(b) Using Eq. 13-38, the ratio of kinetic energies is 

/ 2 1 .
/ 2 2

B B A

A A B

K GmM r r
K GmM r r

= = =

(c) From Eq. 13-40, it is clear that the satellite with the largest value of r has the smallest 
value of |E| (since r is in the denominator). And since the values of E are negative, then 
the smallest value of |E| corresponds to the largest energy E. Thus, satellite B has the 
largest energy. 

(d) The difference is
1 1 .

2B A
B A

GmME E E
r r

Δ = − = − −

Being careful to convert the r values to meters, we obtain ΔE = 1.1 × 108 J. The mass M
of Earth is found in Appendix C. 

60. Although altitudes are given, it is the orbital radii which enter the equations. Thus, rA
= (6370 + 6370) km = 12740 km, and rB = (19110 + 6370) km = 25480 km 



61. (a) We use the law of periods: T2 = (4π2/GM)r3, where M is the mass of the Sun (1.99 
× 1030 kg) and r is the radius of the orbit. The radius of the orbit is twice the radius of 
Earth’s orbit: r = 2re = 2(150 × 109 m) = 300 × 109 m. Thus, 

2 3 2 9 3
7

11 3 2 30

4 4 (300 10 m) 8.96 10 s.
(6.67 10 m / s kg) (1.99 10 kg)

rT
GM
π π

−

×= = = ×
× ⋅ ×

Dividing by (365 d/y) (24 h/d) (60 min/h) (60 s/min), we obtain T = 2.8 y. 

(b) The kinetic energy of any asteroid or planet in a circular orbit of radius r is given by 
K = GMm/2r, where m is the mass of the asteroid or planet. We note that it is 
proportional to m and inversely proportional to r. The ratio of the kinetic energy of the 
asteroid to the kinetic energy of Earth is K/Ke = (m/me) (re/r). We substitute m = 2.0 ×
10−4me and r = 2re to obtain K/Ke = 1.0 × 10−4.



Since the left-hand side of this equation is the force given as 80 N, then we can solve for 
the combination mv2 by multiplying both sides by r = 2.0 × 107 m. Thus, mv2 = (2.0 × 107

m) (80 N) = 1.6 × 109 J. Therefore, 

( )2 9 81 1 1.6 10 J 8.0 10 J .
2 2

K mv= = × = ×

(b) Since the gravitational force is inversely proportional to the square of the radius, then 

2

.F r
F r

′
=

′
Thus, F´ = (80 N) (2/3)2 = 36 N. 

62. (a) Circular motion requires that the force in Newton’s second law provide the 
necessary centripetal acceleration: 

2

2

GmM vm
r r

= .



63. The energy required to raise a satellite of mass m to an altitude h (at rest) is given by 

1
1 1 ,E

E E

E U GM m
R R h

= Δ = −
+

and the energy required to put it in circular orbit once it is there is 

( )
2

2 orb
1 .
2 2

E

E

GM mE mv
R h

= =
+

Consequently, the energy difference is 

1 2
1 3 .

2( )E
E E

E E E GM m
R R h

Δ = − = −
+

(a) Solving the above equation, the height h0 at which 0EΔ =  is given by 

6
0

0

1 3 0    3.19 10  m. 
2( ) 2

E

E E

Rh
R R h

− = = = ×
+

(b) For greater height 0h h> , 0EΔ >  implying 1 2E E> . Thus, the energy of lifting is 
greater.



11 3 2 24

6

9

(6.67 10  m /kg s )(5.98 10 kg)(125 kg)
7.87 10  m

6.33 10 J.

E
A B

GM mE E E
r

−× ⋅ ×= + = − = −
×

= − ×

(b) We note that the speed of the wreckage will be zero (immediately after the collision), 
so it has no kinetic energy at that moment. Replacing m with 2m in the potential energy 
expression, we therefore find the total energy of the wreckage at that instant is  
 

11 3 2 24
9

6

(2 ) (6.67 10  m /kg s )(5.98 10 kg)2(125 kg) 6.33 10 J.
2 2(7.87 10  m)
EGM mE
r

−× ⋅ ×= − = − = − ×
×

 

(c) An object with zero speed at that distance from Earth will simply fall towards the 
Earth, its trajectory being toward the center of the planet. 

64. (a) From Eq. 13-40, we see that the energy of each satellite is −GMEm/2r. The total 
energy of the two satellites is twice that result: 



65. (a) From Kepler’s law of periods, we see that T is proportional to r3/2.

(b) Eq. 13-38 shows that K is inversely proportional to r.

(c) and (d) From the previous part, knowing that K is proportional to v2, we find that v is 
proportional to 1/ r . Thus, by Eq. 13-31, the angular momentum (which depends on the 
product rv) is proportional to r/ r  = r .



66. (a) The pellets will have the same speed v but opposite direction of motion, so the 
relative speed between the pellets and satellite is 2v. Replacing v with 2v in Eq. 13-38 is 
equivalent to multiplying it by a factor of 4. Thus, 

( )( )11 3 2 24
5

rel 3

2(6.67 10 m / kg s ) 5.98 10 kg 0.0040 kg
4 4.6 10 J.

2 (6370 500) 10 m
EGM mK
r

−× ⋅ ×
= = = ×

+ ×

(b) We set up the ratio of kinetic energies: 

( )( )
5

2rel
21

bullet 2

4.6 10 J 2.6 10 .
0.0040kg 950m/s

K
K

×= = ×



( )11 3 2 24
3

6

(6.67 10 m / s kg) 5.98 10 kg
7.54 10 m/s.

7.01 10 m
v

−× ⋅ ×
= = ×

×

(b) The period is

T = 2πr/v = 2π(7.01 × 106 m)/(7.54 × 103 m/s) = 5.84 × 103 s ≈  97 min. 

(c) If E0 is the initial energy then the energy after n orbits is E = E0 − nC, where C = 1.4 ×
105 J/orbit. For a circular orbit the energy and orbit radius are related by E = −GMm/2r,
so the radius after n orbits is given by r = −GMm/2E.
The initial energy is 

( )( )11 3 2 24
9

0 6

(6.67 10 m / s kg) 5.98 10 kg 220 kg
6.26 10 J,

2(7.01 10 m)
E

−× ⋅ ×
= − = − ×

×

the energy after 1500 orbits is 

( )( )9 5 9
0 6.26 10 J 1500 orbit 1.4 10 J orbit 6.47 10 J,E E nC= − = − × − × = − ×

and the orbit radius after 1500 orbits is 

( )( )11 3 2 24
6

9

(6.67 10 m / s kg) 5.98 10 kg 220 kg
6.78 10 m.

2( 6.47 10 J)
r

−× ⋅ ×
= − = ×

− ×

The altitude is h = r − R = (6.78 × 106 m − 6.37 × 106 m) = 4.1 × 105 m. Here R is the 
radius of Earth. This torque is internal to the satellite-Earth system, so the angular 
momentum of that system is conserved. 

(d) The speed is 

( )11 3 2 24
3

6

(6.67 10 m / s kg) 5.98 10 kg
7.67 10 m / s 7.7 km/s.

6.78 10 m
GMv

r

−× ⋅ ×
= = = × ≈

×

(e) The period is 
6

3
3

2 2 (6.78 10 m) 5.6 10 s
7.67 10 m/s

rT
v
π π ×= = = × ≈

×
93 min. 

67. (a) The force acting on the satellite has magnitude GMm/r2, where M is the mass of 
Earth, m is the mass of the satellite, and r is the radius of the orbit. The force points 
toward the center of the orbit. Since the acceleration of the satellite is v2/r, where v is its 
speed, Newton’s second law yields GMm/r2 = mv2/r and the speed is given by v = 

/GM r . The radius of the orbit is the sum of Earth’s radius and the altitude of the 
satellite: r = (6.37 × 106 + 640 × 103) m = 7.01 × 106 m. Thus, 



5
3

7

1.4 10 J 3.2 10 N.
4.40 10 m

EF
s

−Δ ×= − = = ×
×

(g) The resistive force exerts a torque on the satellite, so its angular momentum is not 
conserved.

(h) The satellite-Earth system is essentially isolated, so its momentum is very nearly 
conserved.

(f) Let F be the magnitude of the average force and s be the distance traveled by the 
satellite. Then, the work done by the force is W = −Fs. This is the change in energy: −Fs
= ΔE. Thus, F = −ΔE/s. We evaluate this expression for the first orbit. For a complete 
orbit s = 2πr = 2π(7.01 × 106 m) = 4.40 × 107 m, and ΔE = −1.4 × 105 J. Thus, 



(g) To find the period, we use Eq. 13-34 but replace r with a. The result is 

2 3 2 6 3
3

11 3 2 24

4 4 (6.63 10 m) 5.37 10 s 89.5 min.
(6.67 10 m / s kg) (5.98 10 kg)

aT
GM
π π

−

×= = = × ≈
× ⋅ ×

(h) The orbital period T for Picard’s elliptical orbit is shorter than Igor’s by 

0 5540 s 5370 s 170 sT T TΔ = − = − = .

Thus, Picard will arrive back at point P ahead of Igor by 170 s – 90 s = 80 s. 

68. The orbital radius is 66370 km 400 km 6770 km 6.77 10  m.Er R h= + = + = = ×

(a) Using Kepler’s law given in Eq. 13-34, we find the period of the ships to be

2 3 2 6 3
3

0 11 3 2 24

4 4 (6.77 10 m) 5.54 10 s 92.3 min.
(6.67 10 m / s kg) (5.98 10 kg)

rT
GM
π π

−

×= = = × ≈
× ⋅ ×

(b) The speed of the ships is 

6
3 2

0 3
0

2 2 (6.77 10  m) 7.68 10 m/s
5.54 10 s

rv
T
π π ×= = = ×

×
.

(c) The new kinetic energy is

2 2 2 3 2 10
0

1 1 1(0.99 ) (2000 kg)(0.99) (7.68 10 m/s) 5.78 10  J.
2 2 2

K mv m v= = = × = ×

(d) Immediately after the burst, the potential energy is the same as it was before the burst. 
Therefore,

11 3 2 24
11

6

(6.67 10 m / s kg) (5.98 10 kg)(2000 kg) 1.18 10  J.
6.77 10 m

GMmU
r

−× ⋅ ×= − = − = − ×
×

(e) In the new elliptical orbit, the total energy is  

10 11 105.78 10  J ( 1.18 10  J) 6.02 10  J.E K U= + = × + − × = − ×

(f) For elliptical orbit, the total energy can be written as (see Eq. 13-42) / 2E GMm a= − ,
where a is the semi-major axis. Thus,  

11 3 2 24
6

10

(6.67 10 m / s kg) (5.98 10 kg)(2000 kg) 6.63 10 m.
2 2( 6.02 10  J)

GMma
E

−× ⋅ ×= − = − = ×
− ×



69. We define the “effective gravity” in his environment as geff = 220/60 = 3.67 m/s2.
Thus, using equations from Chapter 2 (and selecting downwards as the positive 
direction), we find the “fall-time” to be 

2
0 2

1 2(2.1 m) 1.1 s.
2 3.67 m/seffy v t g t tΔ = + = =



70. We estimate the planet to have radius r = 10 m. To estimate the mass m of the planet, 
we require its density equal that of Earth (and use the fact that the volume of a sphere is 
4πr3/3):

3

3 34 / 3 4 / 3
E

E
E E

m M rm M
r R R

= =
π π

which yields (with ME ≈ 6 × 1024 kg and RE ≈ 6.4 × 106 m) m = 2.3 × 107 kg. 

(a) With the above assumptions, the acceleration due to gravity is 

( )( )11 3 2 7
5 2 5 2

2 2

6.7 10  m /s kg 2.3 10  kg
1.5 10 m s 2 10 m s .

(10 m)g
Gma
r

−
− −

× ⋅ ×
= = = × ≈ ×

(b) Eq. 13-28 gives the escape speed: 

2 0.02 m/s .Gmv
r

= ≈



Plugging in two pairs of values (for (K1 ,r1) and (K2 ,r2)) from the graph and using the 
value of G and M (for earth) given in the book, we find 

(a) m ≈ 1.0 × 103 kg. 

(b) Similarly, v = (2K/m)1/2 ≈ 1.5 × 103 m/s  (at  r = 1.945 × 107 m). 

71. Using energy conservation (and Eq. 13-21) we have 

         K1  – 
GMm

 r1
  = K2 – 

GMm
 r2

  . 



72. (a) The gravitational acceleration ag is defined in Eq. 13-11.  The problem is 
concerned with the difference between ag evaluated at r = 50Rh and ag evaluated at r = 
50Rh + h (where h is the estimate of your height).  Assuming h is much smaller than 50Rh
then we can approximate h as the dr which is present when we consider the differential of 
Eq. 13-11: 

       |dag| = 
2GM

 r3 dr ≈
2GM

503Rh
3 h  = 

2GM
503(2GM/c2)3 h . 

If we approximate |dag| = 10 m/s2 and h ≈ 1.5 m, we can solve this for M.  Giving our 
results in terms of the Sun’s mass means dividing our result for M by 2 × 1030 kg.  Thus, 
admitting some tolerance into our estimate of h we find the “critical” black hole mass 
should in the range of 105 to 125 solar masses. 

(b) Interestingly, this turns out to be lower limit (which will surprise many students) since 
the above expression shows |dag| is inversely proportional to M.  It should perhaps be 
emphasized that a distance of 50Rh from a small black hole is much smaller than a 
distance of 50Rh from a large black hole. 



8

ˆ ˆ ˆ ˆ(cos i sin j) (cos i sin j)
ˆ ˆ( cos cos )i ( sin sin )j

ˆ( 4.4 10  N) j

C AC A A BC B B

AC A BC B AC A BC B

F F F

F F F F

θ θ θ θ

θ θ θ θ
−

= + + +

= + + +

= − ×

73. The magnitudes of the individual forces (acting on mC, exerted by mA and mB
respectively) are 

8 8
2 22.7 10 N and 3.6 10 NA C B C

AC BC
AC BC

Gm m Gm mF F
r r

− −= = × = = ×

where rAC = 0.20 m and rBC = 0.15 m. With rAB = 0.25 m, the angle AF makes with the x
axis can be obtained as 

2 2 2
1 1cos cos (0.80) 217 .

2
AC AB BC

A
AC AB

r r r
r r

θ π π− −+ −= + = + = °

Similarly, the angle BF makes with the x axis can be obtained as 

2 2 2
1 1cos cos (0.60) 53 .

2
AB BC AC

B
AB BC

r r r
r r

θ − −+ −= − = − = − °

The net force acting on mC then becomes 



74. The key point here is that angular momentum is conserved: 

Ipωp = Iaωa

which leads to 2( / )p a p ar rω ω= , but rp = 2a – ra where a is determined by Eq. 13-34 
(particularly, see the paragraph after that equation in the textbook).  Therefore, 

ωp = 
ra

2 ωa

(2(GMT 2/4π2)1/3 – ra)2  = 9.24 × 10−5 rad/s . 



75. (a) Using Kepler’s law of periods, we obtain 

2
3 44 2.15 10 s .T r

GM
π= = ×

(b) The speed is constant (before she fires the thrusters), so vo = 2πr/T = 1.23 × 104 m/s. 

(c) A two percent reduction in the previous value gives v = 0.98vo = 1.20 × 104 m/s. 

(d) The kinetic energy is K = ½mv2 = 2.17 × 1011 J. 

(e) The potential energy is U = −GmM/r = −4.53 × 1011 J. 

(f) Adding these two results gives E = K + U = −2.35 × 1011 J. 

(g) Using Eq. 13-42, we find the semi-major axis to be 

74.04 10 m .
2

GMma
E

−= = ×

(h) Using Kepler’s law of periods for elliptical orbits (using a instead of r) we find the 
new period is 

3 44 2.03 10 s .T a
GM

π′ = = ×
2

This is smaller than our result for part (a) by T − T´ = 1.22 × 103 s. 

(i) Elliptical orbit has a smaller period. 



76. (a) With 302.0 10 kgM = ×  and r = 10000 m, we find 

12 2
2 1.3 10 m/s .g

GMa
r

= = ×

(b) Although a close answer may be gotten by using the constant acceleration equations 
of Chapter 2, we show the more general approach (using energy conservation): 

o oK U K U+ = +

where Ko = 0, K = ½mv2 and U given by Eq. 13-21. Thus, with ro = 10001 m, we find 

6

o

1 12 1.6 10 m/s .v GM
r r

= − = ×



77. We note that rA (the distance from the origin to sphere A, which is the same as the 
separation between A and B) is 0.5, rC = 0.8, and rD = 0.4 (with SI units understood). The 
force kF  that the kth sphere exerts on mB has magnitude 2/k B kGm m r  and is directed from 
the origin towards mk so that it is conveniently written as 

( )2 3
ˆ ˆ ˆ ˆ= i + j = i + j .k B k k k B

k k k
k k k k

Gm m x y Gm mF x y
r r r r

Consequently, the vector addition (where k equals A,B and D) to obtain the net force on 
mB becomes 

5
net 3 3

ˆ ˆ ˆ= i j (3.7 10 N)j.k k k k
k B

k k kk k

m x m yF F Gm
r r

−= + = ×



to include in the computation can only lower the result (that is, make the result more 
negative).

(c) The observation in the previous part implies that the work I do in removing sphere A
(to obtain the case considered in part (a)) must lead to an increase in the system energy; 
thus, I do positive work. 

(d) To put sphere A back in, I do negative work, since I am causing the system energy to 
become more negative. 

78. (a) We note that rC (the distance from the origin to sphere C, which is the same as the 
separation between C and B) is 0.8, rD = 0.4, and the separation between spheres C and D
is rCD = 1.2 (with SI units understood). The total potential energy is therefore 

4
2 2 2 = 1.3 10  JB C C DB D

C D CD

GM M GM MGM M
r r r

−− − − − ×

using the mass-values given in the previous problem. 

(b) Since any gravitational potential energy term (of the sort considered in this chapter) is 
necessarily negative (−GmM/r2 where all variables are positive) then having another mass 



79. We use F = Gmsmm/r2, where ms is the mass of the satellite, mm is the mass of the 
meteor, and r is the distance between their centers. The distance between centers is r = R
+ d = 15 m + 3 m = 18 m. Here R is the radius of the satellite and d is the distance from 
its surface to the center of the meteor. Thus, 

( )( )( )
( )

11 2 2
11

2

6.67 10 N m / kg 20kg 7.0kg
2.9 10 N.

18m
F

−
−

× ⋅
= = ×



80. (a) Since the volume of a sphere is 4πR3/3, the density is 

total total
3 34

3

3 .
4

M M
R R

ρ
π π

= =

When we test for gravitational acceleration (caused by the sphere, or by parts of it) at 
radius r (measured from the center of the sphere), the mass M which is at radius less than 
r is what contributes to the reading (GM/r2). Since M = ρ(4πr3/3) for r ≤ R then we can 
write this result as 

3
total

3
total

2 3

3 4
4 3
M rG

R GM r
r R

π
π

=

when we are considering points on or inside the sphere. Thus, the value ag referred to in 
the problem is the case where r = R:

total
2=g

GMa ,
R

and we solve for the case where the acceleration equals ag/3:

total total
2 3 .

3 3
GM GM r Rr

R R
= =

(b) Now we treat the case of an external test point. For points with r > R the acceleration 
is GMtotal/r2, so the requirement that it equal ag/3 leads to 

total total
2 2 3 .

3
GM GM r R

R r
= =



81. Energy conservation for this situation may be expressed as follows: 

2 2
1 1 2 2 1 2

1 2

1 1
2 2

GmM GmMK U K U mv mv
r r

+ = + − = −

where M = 5.98 × 1024 kg, r1 = R = 6.37 × 106 m and v1 = 10000 m/s. Setting v2 = 0 to 
find the maximum of its trajectory, we solve the above equation (noting that m cancels in 
the process) and obtain r2 = 3.2 × 107 m. This implies that its altitude is r2 − R = 2.5 × 107

m.



82. (a) Because it is moving in a circular orbit, F/m must equal the centripetal 
acceleration:

280 N .
50 kg

v
r

=

But v = 2πr/T, where T = 21600 s, so we are led to 

2
2

41.6m/s r
T
π=
2

which yields r = 1.9 × 107 m. 

(b) From the above calculation, we infer v2 = (1.6 m/s2)r which leads to v2 = 3.0 × 107

m2/s2. Thus, K = ½mv2 = 7.6 × 108 J. 

(c) As discussed in § 13-4, F/m also tells us the gravitational acceleration: 

2
21.6 m/s .g

GMa
r

= =

We therefore find M = 8.6 × 1024 kg. 



(b) To barely escape means to have total energy equal to zero (see discussion prior to Eq. 
13-28). If m is the mass of the meteoroid, then 

2 41 40 8.9 10 m/s .
2

GmM GmM GMmv v
r r r

− − = = = ×

83. (a) We write the centripetal acceleration (which is the same for each, since they have 
identical mass) as rω2 where ω is the unknown angular speed. Thus, 

( )
2

2
2 2

( ) ( )
42

G M M GM Mr
rr

ω= =

which gives 3 71
2 / 2.2 10 rad/s.MG rω −= = ×



84. See Appendix C. We note that, since v = 2πr/T, the centripetal acceleration may be 
written as a = 4π2r/T2. To express the result in terms of g, we divide by 9.8 m/s2.

(a) The acceleration associated with Earth’s spin (T = 24 h = 86400 s) is 

6
3

2 2

4 (6.37 10 m) 3.4 10 .
(86400s) (9.8m/s )

a g gπ −×= = ×
2

(b) The acceleration associated with Earth’s motion around the Sun (T = 1 y = 3.156 ×
107 s) is 

11
4

7 2 2

4 (1.5 10 m) 6.1 10 .
(3.156 10 s) (9.8m/s )

a g gπ −×= = ×
×

2

(c) The acceleration associated with the Solar System’s motion around the galactic center 
(T = 2.5 × 108 y = 7.9 × 1015 s) is 

20
11

15 2 2

4 (2.2 10 m) 1.4 10 .
(7.9 10 s) (9.8m/s )

a g gπ −×= = ×
×

2



85. We use m1 for the 20 kg of the sphere at (x1, y1) = (0.5, 1.0) (SI units understood), m2

for the 40 kg of the sphere at (x2, y2) = (−1.0, −1.0), and m3 for the 60 kg of the sphere at 
(x3, y3) = (0, −0.5). The mass of the 20 kg object at the origin is simply denoted m. We 
note that 1 21.25, 2r r= = , and r3 = 0.5 (again, with SI units understood). The force nF
that the nth sphere exerts on m has magnitude 2/n nGm m r  and is directed from the origin 
towards mn, so that it is conveniently written as 

( )2 3
ˆ ˆ ˆ ˆ= i + j = i + j .n n n n

n n n
n n n n

Gm m x y Gm mF x y
r r r r

Consequently, the vector addition to obtain the net force on m becomes 

3 3 3
9 7

net 3 3
=1 1 1

ˆ ˆ ˆ ˆ= i j 9.3 10 i 3.2 10 jn n n n
n

n n nn n

m x m yF F Gm
r r

− −

= =

= + = − × − ×

in SI units. Therefore, we find the net force magnitude is 7
net 3.2 10 NF −= × .



86. We apply the work-energy theorem to the object in question. It starts from a point at 
the surface of the Earth with zero initial speed and arrives at the center of the Earth with 
final speed vf. The corresponding increase in its kinetic energy, ½mvf

2, is equal to the 
work done on it by Earth’s gravity: ( )F dr Kr dr= −  (using the notation of that Sample 
Problem referred to in the problem statement). Thus, 

0 02 21 1( )
2 2f R R

mv F dr Kr dr KR= = − =

where R is the radius of Earth. Solving for the final speed, we obtain vf = R /K m . We 
note that the acceleration of gravity ag = g = 9.8 m/s2 on the surface of Earth is given by  

ag = GM/R2 = G(4πR3/3)ρ/R2,

where ρ is Earth’s average density. This permits us to write K/m = 4πGρ/3 = g/R.
Consequently,

2 6 3(9.8 m/s ) (6.37 10 m) 7.9 10 m/s .f
K gv R R gR
m R

= = = = × = ×



87. (a) The total energy is conserved, so there is no difference between its values at 
aphelion and perihelion. 

(b) Since the change is small, we use differentials: 

( ) ( ) ( )
( )

( )
11 30 24

9
22 11

6.67 10 1.99 10 5.98 10
5 10

1.5 10
E SGM MdU dr

r

−× × ×
= ≈ ×

×

which yields ΔU ≈ 1.8 × 1032 J. A more direct subtraction of the values of the potential 
energies leads to the same result. 

(c) From the previous two parts, we see that the variation in the kinetic energy ΔK must 
also equal 1.8 × 1032 J.

(d) With ΔK ≈ dK = mv dv, where v ≈ 2πR/T, we have 

( ) ( )11
32 24

7

2 1.5 10
1.8 10 5.98 10

3.156 10
v

×
× ≈ × Δ

×

which yields a difference of Δv ≈ 0.99 km/s in Earth’s speed (relative to the Sun) between 
aphelion and perihelion. 



88. Let the distance from Earth to the spaceship be r. Rem = 3.82 × 108 m is the distance 
from Earth to the moon. Thus, 

( )2 2= = = ,m e
m E

em

GM m GM mF F
rR r−

where m is the mass of the spaceship. Solving for r, we obtain 

8
8

22 24

3.82 10 m 3.44 10 m
/ 1 (7.36 10 kg) /(5.98 10 kg) 1
em

m e

Rr
M M

×= = = ×
+ × × +

.



89. We integrate Eq. 13-1 with respect to r from 3RE to 4RE and obtain the work equal 
to –GMEm(1/(4RE) – 1/(3RE))  = GMEm/12RE .



90. If the angular velocity were any greater, loose objects on the surface would not go 
around with the planet but would travel out into space. 

(a) The magnitude of the gravitational force exerted by the planet on an object of mass m
at its surface is given by F = GmM / R2, where M is the mass of the planet and R is its 
radius. According to Newton’s second law this must equal mv2 / R, where v is the speed 
of the object. Thus, 

2

2 = .GM v
R R

Replacing M with (4π/3) ρR3 (where ρ is the density of the planet) and v with 2πR/T
(where T is the period of revolution), we find 

2

2

4 4= .
3

RG R
T

π πρ

We solve for T and obtain 
3T
G

π
ρ

= .

(b) The density is 3.0 × 103 kg/m3. We evaluate the equation for T:

( )( )
3

11 3 2 3 3

3 6.86 10 s 1.9h.
6.67 10 m / s kg 3.0 10 kg/m

T π
−

= = × =
× ⋅ ×



However, our approach will not assume constant acceleration; we use energy 
conservation:

02 2
0

0 0

2 ( )1 1
2 2

GM r rGMm GMmmv mv v
r r r r

−
− = − =

which yields v = 1.4 × 106 m/s. 

(b) We estimate the height of the apple to be h = 7 cm = 0.07 m. We may find the answer 
by evaluating Eq. 13-11 at the surface (radius r in part (a)) and at radius r + h, being 
careful not to round off, and then taking the difference of the two values, or we may take 
the differential of that equation — setting dr equal to h. We illustrate the latter procedure: 

6 2
3 3| | 2 2 3 10 m/s .g

GM GMda dr h
r r

= − ≈ = ×

91. (a) It is possible to use 2 2
0 2v v a y= + Δ as we did for free-fall problems in Chapter 2 

because the acceleration can be considered approximately constant over this interval. 



92. (a) The gravitational force exerted on the baby (denoted with subscript b) by the 
obstetrician (denoted with subscript o) is given by 

( )( )( )
( )

11 2 2
8

22

6.67 10 N m / kg 70kg 3kg
1 10 N.

1m
o b

bo
bo

Gm mF
r

−
−

× ⋅
= = = ×

(b) The maximum (minimum) forces exerted by Jupiter on the baby occur when it is 
separated from the Earth by the shortest (longest) distance rmin (rmax), respectively. Thus 

( )( )( )
( )

11 2 2 27
max 6

22 11
min

6.67 10 N m / kg 2 10 kg 3kg
1 10 N.

6 10 m
J b

bJ
Gm mF

r

−
−

× ⋅ ×
= = = ×

×

(c) And we obtain 

( )( )( )
( )

11 2 2 27
min 7

22 11
max

6.67 10 N m / kg 2 10 kg 3kg
5 10 N.

9 10 m
J b

bJ
Gm mF

r

−
−

× ⋅ ×
= = = ×

×

(d) No. The gravitational force exerted by Jupiter on the baby is greater than that by the 
obstetrician by a factor of up to 1 × 10−6 N/1 × 10−8 N = 100. 



This supplies the centripetal force needed for the motion of the star: 

2

2

2where  .
4

Gm m v rM m v
r r T

+ = = p

Plugging in for speed v, we arrive at an equation for period T:

3 22 .
( / 4)

rT
G M m

π=
+

93. The magnitude of the net gravitational force on one of the smaller stars (of mass m) is 

( )22 2 .
42

GMm Gmm Gm mM
r rr

+ = +



94. (a) We note that height = R − REarth where REarth = 6.37 × 106 m. With M = 5.98 × 1024

kg, R0 = 6.57 × 106 m and R = 7.37 × 106 m, we have 

3 2

0

1 (3.70 10 )
2i i

GmM GmMK U K U m K
R R

+ = + × − = − ,

which yields K = 3.83 × 107 J. 

(b) Again, we use energy conservation. 

3 2

0

1 (3.70 10 ) 0
2i i f f

f

GmM GmMK U K U m
R R

+ = + × − = −

Therefore, we find Rf = 7.40 × 106 m. This corresponds to a distance of 1034.9 km ≈ 1.03 
× 103 km above the Earth’s surface. 



95. Energy conservation for this situation may be expressed as follows: 

2 2
1 1 2 2 1 2

1 2

1 1
2 2

GmM GmMK U K U mv mv
r r

+ = + − = −

where M = 7.0 × 1024 kg, r2 = R = 1.6 × 106 m and r1 = ∞ (which means that U1 = 0). We 
are told to assume the meteor starts at rest, so v1 = 0. Thus, K1 + U1 = 0 and the above 
equation is rewritten as 

2 4
2 2

2

1 2 2.4 10 m s.
2

GmM GMmv v
r R

− = = ×



0 0 2i i
GmMK U K U K

r
+ = + + = −

which yields K = 2GmM/r = 5.3 × 10−8 J. 

(b) Since the y-component of each force will cancel, the net force points in the –x
direction, with a magnitude 2Fx = 2 (GmM/r2) cos θ , where θ  = tan−1 (4/3) = 53°. Thus, 
the result is 8

net
ˆ( 6.4 10  N)i.F −= − ×

96. The initial distance from each fixed sphere to the ball is r0 = ∞, which implies the 
initial gravitational potential energy is zero. The distance from each fixed sphere to the 
ball when it is at x = 0.30 m is r = 0.50 m, by the Pythagorean theorem. 

(a) With M = 20 kg and m = 10 kg, energy conservation leads to 



97. The kinetic energy in its circular orbit is 
1
2 mv2  where v = 2πr/T.  Using the values 

stated in the problem and using Eq. 13-41, we directly find E =  –1.87 × 109 J.



98. (a) From Ch. 2, we have 2 2
0 2v v a x= + Δ , where a may be interpreted as an average 

acceleration in cases where the acceleration is not uniform. With v0 = 0, v = 11000 m/s 
and Δx = 220 m, we find a = 2.75 × 105 m/s2. Therefore, 

5 2
4

2

2.75 10 m/s 2.8 10
9.8 m/s

a g g×= = × .

(b) The acceleration is certainly deadly enough to kill the passengers. 

(c) Again using 2 2
0 2v v a x= + Δ , we find 

2
2(7000 m/s) 7000 m/s 714 .

2(3500 m)
a g= = =

(d) Energy conservation gives the craft’s speed v (in the absence of friction and other 
dissipative effects) at altitude h = 700 km after being launched from R = 6.37 × 106 m 
(the surface of Earth) with speed v0 = 7000 m/s. That altitude corresponds to a distance 
from Earth’s center of r = R + h = 7.07 × 106 m. 

2 2
0

1 1 .
2 2

GMm GMmmv mv
R r

− = −

With M = 5.98 × 1024 kg (the mass of Earth) we find v = 6.05 × 103 m/s. But to orbit at 
that radius requires (by Eq. 13-37)

v´ = /GM r  = 7.51 × 103 m/s. 

The difference between these is v´ − v = 1.46 × 103 m/s 31.5 10  m/s≈ × , which 
presumably is accounted for by the action of the rocket engine. 



99. (a) All points on the ring are the same distance (r = x2 + R2  ) from the particle, so 
the gravitational potential energy is simply U =  –GMm/ x2 + R2  , from Eq. 13-21.  The 
corresponding force (by symmetry) is expected to be along the x axis, so we take a 
(negative) derivative of U (with respect to x) to obtain it (see Eq. 8-20).  The result for the 
magnitude of the force is GMmx(x2 + R2)−3/2.

(b) Using our expression for U, then the magnitude of the loss in potential energy as the 
particle falls to the center is GMm(1/R −1/ x2 + R2  ).  This must “turn into” kinetic 

energy ( 
1
2 mv2 ), so we solve for the speed and obtain 

v = [2GM(R−1 – (R2 + x2)−1/2)]1/2 . 



100. Consider that we are examining the forces on the mass in the lower left-hand corner 
of the square.  Note that the mass in the upper right-hand corner is 20 2 = 28 cm = 0.28 
m away.  Now, the nearest masses each pull with a force of GmM / r2 = 3.8 × 10−9 N, one 
upward and the other rightward.  The net force caused by these two forces is (3.8 × 10−9,
3.8 × 10−9) →  (5.3 × 10−9 ∠ 45°), where the rectangular components are shown first -- 
and then the polar components (magnitude-angle notation).  Now, the mass in the upper 
right-hand corner also pulls at 45°, so its force-magnitude (1.9 × 10−9) will simply add to 
the magnitude just calculated.  Thus, the final result is 7.2 × 10−9 N. 



(f) And 21
2 B Bmv K=  yields vB = 2 / iGm R .

(g) The answer to part (f) is incorrect, due to having ignored the accelerated motion of 
“our” frame (that of body A). Our computations were therefore carried out in a 
noninertial frame of reference, for which the energy equations of Chapter 8 are not 
directly applicable. 

101. (a) Their initial potential energy is −Gm2/Ri and they started from rest, so energy 
conservation leads to 

2 2 2

total total .
0.5i i i

Gm Gm GmK K
R R R

− = − =

(b) They have equal mass, and this is being viewed in the center-of-mass frame, so their 
speeds are identical and their kinetic energies are the same. Thus, 

2

total
1 .
2 2 i

GmK K
R

= =

(c) With K = ½ mv2, we solve the above equation and find v = / iGm R .

(d) Their relative speed is 2v = 2 / iGm R . This is the (instantaneous) rate at which the 
gap between them is closing. 

(e) The premise of this part is that we assume we are not moving (that is, that body A
acquires no kinetic energy in the process). Thus, Ktotal = KB and the logic of part (a) leads 
to KB = Gm2/Ri.



102. Gravitational acceleration is defined in Eq. 13-11 (which we are treating as a 
positive quantity).  The problem, then, is asking for the magnitude difference of  ag net
when the contributions from the Moon and the Sun are in the same direction (ag net = agSun
+ agMoon) as opposed to when they are in opposite directions (ag net = agSun – agMoon).  The 
difference (in absolute value) is clearly 2agMoon.  In specifically wanting the percentage
change, the problem is requesting us to divide this difference by the average of the two ag

net values being considered (that average is easily seen to be equal to agSun), and finally 
multiply by 100% in order to quote the result in the right format.  Thus, 

2agMoon
agSun

  =  2
MMoon
 MSun

rSun to Eearth
rMoon to Earth

2

 = 2
7.36 x 1022

1.99 x 1030
1.50 x 1011

3.82 x 108

2

  = 0.011 = 1.1%. 



103. (a) Kepler’s law of periods is 
2 34 .T r

GM
π=
2

With M = 6.0 × 1030 kg and T = 300(86400) = 2.6 × 107 s, we obtain r = 1.9 × 1011 m. 

(b) That its orbit is circular suggests that its speed is constant, so 

42 4.6 10 m/s .rv
T
π= = ×



104. Using Eq. 13-21, the potential energy of the dust particle is 

U = –GmME/R  – GmMm/r  =  –Gm(ME/R + Mm/r) . 
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