COMPARISON OF PROPERTIES OF DOT PRODUCT AND CROSS PRODUCT

DOT PRODUCT	CROSS PRODUCT
$\mathbf{u} \bullet \mathbf{v} = u_1 v_1 + u_2 v_2 + u_3 v_3$	$\mathbf{u} \times \mathbf{v} = \langle u_2 v_3 - u_3 v_2, u_3 v_1 - u_1 v_3, u_1 v_2 - u_2 v_1 \rangle$
	= $(u_2v_3-u_3v_2)\mathbf{i} + (u_3v_1-u_1v_3)\mathbf{j} + (u_1v_2-u_2v_1)\mathbf{k}$
	$\mathbf{u} \times \mathbf{v}$ can be calculated using diagonal method
	The work of
	101 V2 101 102
	Θ
	$\mathbf{u} \times \mathbf{v}$ can also be calculated by determinant method
	as shown in the textbook.
vector \bullet vector = scalar (number)	$vector \times vector = vector$
$\mathbf{u} \bullet \mathbf{v} = \mathbf{u} \mathbf{v} \cos \theta$	$ \mathbf{u} \times \mathbf{v} = \mathbf{u} \mathbf{v} \sin \theta$
u • v does not have a "direction"	Direction of $\mathbf{u} \times \mathbf{v}$ is determined by right hand rule:
because it is a scalar, not a vector	Curl fingers of right hand from u to v ;
	thumb points in direction of u × v
PROPERTIES OF DOT PRODUCT	PROPERTIES OF CROSS PRODUCT
u•v= v•u	$\mathbf{u} \times \mathbf{v} = -\mathbf{v} \times \mathbf{u}$
Commutative	Anticommutative
$\mathbf{u} \bullet (\mathbf{v} + \mathbf{w}) = \mathbf{u} \bullet \mathbf{v} + \mathbf{u} \bullet \mathbf{w}$	$\mathbf{u} \times (\mathbf{v} + \mathbf{w}) = \mathbf{u} \times \mathbf{v} + \mathbf{u} \times \mathbf{w}$
Distributive over addition	Distributive over addition
$c (\mathbf{u} \bullet \mathbf{v}) = (c\mathbf{u}) \bullet \mathbf{v} = \mathbf{u} \bullet (c\mathbf{v})$	$c(\mathbf{u} \times \mathbf{v}) = (c\mathbf{u}) \times \mathbf{v} = \mathbf{u} \times (c\mathbf{v})$
$\mathbf{v} \bullet \mathbf{v} = \mathbf{v} ^2$	i×j=k j×k=i k×i=j
$\mathbf{v} \cdot \mathbf{v} = 0$ if and only if $\mathbf{v} = 0$	$\mathbf{v} \times \mathbf{v} = 0$ (because v is parallel to itself)
If u and v are non-zero vectors then:	If u and v are non-zero vectors then:
$\mathbf{u} \cdot \mathbf{v} = 0$ if and only if \mathbf{u} and \mathbf{v} are orthogonal	$\mathbf{u} \times \mathbf{v}$ is orthogonal to both \mathbf{u} and \mathbf{v}
u • v >0 if and only if the angle between u and v is acute $(0^\circ < \theta < 90^\circ)$	$\mathbf{u} \times \mathbf{v} = 0$ if and only if \mathbf{u} and \mathbf{v} are parallel
$\mathbf{u} \cdot \mathbf{v} < 0$ if and only if the angle between \mathbf{u} and \mathbf{v} is obtuse (90° < θ < 180°)	
APPLICATIONS OF DOT PRODUCT	APPLICATIONS OF CROSS PRODUCT
$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\ \mathbf{u}\ \ \mathbf{v}\ }$	Use $\mathbf{u} \times \mathbf{v}$ when you need to find a vector that is orthogonal to both \mathbf{u} and \mathbf{v}
allows us to find the angle between \mathbf{u} and \mathbf{v}	
$(\mathbf{u} \cdot \mathbf{v}) \mathbf{v} (\mathbf{u} \cdot \mathbf{v}) (\mathbf{u} \cdot \mathbf{v})$	area of parallelogram defined by vectors \mathbf{u} and \mathbf{v}
$\mathbf{proj}_{\mathbf{v}}\mathbf{u} = \left(\frac{\mathbf{u} \cdot \mathbf{v}}{\ \mathbf{v}\ }\right) \frac{\mathbf{v}}{\ \mathbf{v}\ } = \left(\frac{\mathbf{u} \cdot \mathbf{v}}{\ \mathbf{v}\ ^2}\right) \mathbf{v} = \left(\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}\right) \mathbf{v}$	$= \mathbf{u} \times \mathbf{v} $
	area of triangle defined by vectors \mathbf{u} and \mathbf{v}
$orth_v u = u - proj_v u$	$= (1/2) \mathbf{u} \times \mathbf{v} $
Work = $\mathbf{F} \bullet \mathbf{D}$	Cross product is useful when finding the equation
U.S.: units of work are foot-pounds	of a plane that contains two given vectors.
Metric: units of work are joules	(This will be covered in section 11.4)