COMPARISON OF PROPERTIES OF DOT PRODUCT AND CROSS PRODUCT

DOT PRODUCT	CROSS PRODUCT										
$\mathbf{u} \bullet \mathbf{v}=u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}$	$\begin{aligned} \mathbf{u} \times \mathbf{v} & =\left\langle u_{2} v_{3}-u_{3} v_{2}, u_{3} v_{1}-u_{1} v_{3}, u_{1} v_{2}-u_{2} v_{1}\right\rangle \\ & =\left(u_{2} v_{3}-u_{3} v_{2}\right) \mathbf{i}+\left(u_{3} v_{1}-u_{1} v_{3}\right) \mathbf{j}+\left(u_{1} v_{2}-u_{2} v_{1}\right) \mathbf{k} \end{aligned}$ $\mathbf{u} \times \mathbf{v}$ can be calculated using diagonal method $\mathbf{u} \times \mathbf{v}$ can also be calculated by determinant method as shown in the textbook.										
vector \bullet vector = scalar (number)	vector \times vector $=$ vector										
$\mathbf{u} \bullet \mathbf{v}=\\|\mathbf{u}\\|\\|\mathbf{v}\\| \cos \theta$	$\\|\mathbf{u} \times \mathbf{v}\\|=\\|\mathbf{u}\\|\\|\mathbf{v}\\| \sin \theta$										
u•v does not have a "direction" because it is a scalar, not a vector	Direction of $\mathbf{u} \times \mathbf{v}$ is determined by right hand rule: Curl fingers of right hand from \mathbf{u} to \mathbf{v}; thumb points in direction of $\mathbf{u} \times \mathbf{v}$										
PROPERTIES OF DOT PRODUCT	PROPERTIES OF CROSS PRODUCT										
$\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$ Commutative	$\mathbf{u} \times \mathbf{v}=-\mathbf{v} \times \mathbf{u}$ Anticommutative										
$\mathbf{u} \cdot(\mathbf{v}+\mathbf{w})=\mathbf{u} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{w}$ Distributive over addition	$\mathbf{u} \times(\mathbf{v}+\mathbf{w})=\mathbf{u} \times \mathbf{v}+\mathbf{u} \times \mathbf{w}$ Distributive over addition										
$c(\mathbf{u} \cdot \mathbf{v})=(C \mathbf{u}) \cdot \mathbf{v}=\mathbf{u} \cdot(C \mathbf{v})$	$C(\mathbf{u} \times \mathbf{v})=(C \mathbf{u}) \times \mathbf{v}=\mathbf{u} \times(C \mathbf{v})$										
$\mathbf{v} \bullet \mathbf{v}=\\|\mathbf{v}\\|^{2}$	$\mathbf{i} \times \mathbf{j}=\mathbf{k} \quad \mathbf{j} \times \mathbf{k}=\mathbf{i} \quad \mathbf{k} \times \mathbf{i}=\mathbf{j}$										
$\mathbf{v} \bullet \mathbf{v}=0$ if and only if $\mathbf{v}=\mathbf{0}$	$\mathbf{v} \times \mathbf{v}=\mathbf{0}$ (because \mathbf{v} is parallel to itself)										
If \mathbf{u} and \mathbf{v} are non-zero vectors then: $\mathbf{u} \bullet \mathbf{v}=0$ if and only if \mathbf{u} and \mathbf{v} are orthogonal $\mathbf{u} \cdot \mathbf{v}>0$ if and only if the angle between \mathbf{u} and \mathbf{v} is acute ($0^{\circ}<\theta<90^{\circ}$) $\mathbf{u} \cdot \mathbf{v}<0$ if and only if the angle between \mathbf{u} and \mathbf{v} is obtuse $\left(90^{\circ}<\theta<180^{\circ}\right)$	If \mathbf{u} and \mathbf{v} are non-zero vectors then: $\mathbf{u} \times \mathbf{v}$ is orthogonal to both \mathbf{u} and \mathbf{v} $\mathbf{u} \times \mathbf{v}=\mathbf{0}$ if and only if \mathbf{u} and \mathbf{v} are parallel										
APPLICATIONS OF DOT PRODUCT	APPLICATIONS OF CROSS PRODUCT										
$\cos \theta=\frac{\mathbf{u} \bullet \mathbf{v}}{\\|\mathbf{u}\\|\\|\mathbf{v}\\|}$ allows us to find the angle between \mathbf{u} and \mathbf{v}	Use $\mathbf{u} \times \mathbf{v}$ when you need to find a vector that is orthogonal to both \mathbf{u} and \mathbf{v}										
$\begin{aligned} & \operatorname{proj}_{\mathbf{v}} \mathbf{u}=\left(\frac{\mathbf{u} \bullet \mathbf{v}}{\\|\mathbf{v}\\|}\right) \frac{\mathbf{v}}{\\|\mathbf{v}\\|}=\left(\frac{\mathbf{u} \cdot \mathbf{v}}{\\|\mathbf{v}\\|^{2}}\right) \mathbf{v}=\left(\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}\right) \mathbf{v} \\ & \mathbf{o r t h}_{\mathbf{v}} \mathbf{u}=\mathbf{u}-\mathbf{p r o j}_{\mathbf{v}} \mathbf{u} \end{aligned}$	area of parallelogram defined by vectors \mathbf{u} and \mathbf{v} $=\\|\mathbf{u} \times \mathbf{v}\\|$ area of triangle defined by vectors \mathbf{u} and \mathbf{v} $=(1 / 2)\\|\mathbf{u} \times \mathbf{v}\\|$										
Work $=\mathbf{F} \bullet \mathbf{D}$ U.S.: units of work are foot-pounds Metric: units of work are joules	Cross product is useful when finding the equation of a plane that contains two given vectors. (This will be covered in section 11.4)										

