More Work

Use work/energy arguments to solve each of the following problems.

1. A baseball ($\mathrm{m}=0.150 \mathrm{~kg}$) is traveling $20 \mathrm{~m} / \mathrm{s}$ when it hits Ian's glove. Ian moves his glove 25 cm as he slows the ball to rest.
a. What is the work done by the glove on the ball? Ans: -30J
b. What is the average force of the glove on the ball? Ans: 120 N
c. What would happen to the force of the ball on the glove if the initial speed were doubled but the stopping distance stayed the same? Ans: $4 X$
2. A pole vaulter $(\mathrm{m}=60 \mathrm{~kg})$ falls 15 feet from rest onto a large mat. Treat the mat like a spring for the 0.5 meters it takes to bring the vaulter to rest.
a. How much work is done by the mat on the vaulter? Ans: -2981J
b. What is the effective spring constant for the mat? $A n s: 23850 \mathrm{~N} / \mathrm{m}$
3. A 75 kg meteorite buries itself 5.0 meters into soft mud. The force of the mud on the meteorite is approximated by $F(x)=640 x^{3}$ Newtons where x is the depth in the mud. What was the speed of the meteorite when it initially impacted the mud? Ans: $50.7 \mathrm{~m} / \mathrm{s}$
4. The barrel of a gun on a World War II battleship is 15 m long. The shells had a mass of 1250 kg and were fired with a muzzle speed of $750 \mathrm{~m} / \mathrm{s}$. Assume the gun is inclined to a 45° angle.
a. What is the average force of the explosion on the shell in the barrel? Ans: $2.34 \times 10^{7} \mathrm{~N}$
b. What is the maximum height of the shell above the ground? Ans: $14.3 \times 10^{3} \mathrm{~m}$
5. When a 1100 kg car is in neutral, it slows from $60 \mathrm{mi} / \mathrm{h}$ to $40 \mathrm{mi} / \mathrm{h}$ in 7 seconds due to air resistance. What is the power output needed to maintain $50 \mathrm{mi} / \mathrm{h}$? Ans: 31260 Watts
6. A 1400 kg sports car speeds up from rest to $95 \mathrm{~km} / \mathrm{h}$ in 7.5 s . What is the average power of the road on the car? Ans: 65000 Watts
7. A pump lifts 21.0 kg of water per minute through a height of 3.5 m . What minimum output rating must the pump motor have? Ans: 12 Watts
