Forces in Circular Motion

1. Two children are on a merry-go-round that is rotating at 5 revolutions each minute. One is standing 1 m from the center, while the other is 1.5 meters from the center.
a. What is the linear speed of each child?
b. What is the centripetal acceleration for each child?
c. Draw a free body diagram for one of the children.
d. If the child on the outer edge falls off. Draw a diagram to show where he would land.
2. A 25 gram stopper is twirled on the end of a 0.75 m string in a vertical circle. At the top, the stopper is traveling $5.0 \mathrm{~m} / \mathrm{s}$.
a. Draw a free body diagram for the stopper at the top of the motion.
b. What is the centripetal acceleration of the stopper?
c. What is the force of the rope on the stopper at the top of the motion?
3. The same stopper and string are used to again produce a vertical circle. This time, the stopper is traveling $5.0 \mathrm{~m} / \mathrm{s}$ at the bottom.
a. Draw a free body diagram for the stopper at the bottom of the motion.
b. What is the centripetal acceleration of the stopper?
c. What is the force of the rope on the stopper at the bottom of the motion?
4. A car is traveling $20 \mathrm{~m} / \mathrm{s}$ when it reaches the top of a hill that has an approximate radius of 75 m . The driver has a mass of 80 kg .
a. Draw a free body diagram for the driver of the car.
b. What is the centripetal acceleration for the driver of the car?
c. What is the apparent weight of the driver?
5. A car is traveling $20 \mathrm{~m} / \mathrm{s}$ when it reaches the bottom of a hill that has an approximate radius of 75 m . The driver has a mass of 80 kg .
a. Draw a free body diagram for the driver of the car.
b. What is the centripetal acceleration for the driver of the car?
c. What is the apparent weight of the driver?
6. A car is making a horizontal turn with a radius of 25 meters at $20 \mathrm{~m} / \mathrm{s}$. The road is banked so the car doesn't need friction to make the turn.
a. Draw a free body diagram for the car.
b. What is the centripetal acceleration for the car?
c. What force causes this acceleration?
