Reading Potential Energy Curves

The graph represents the potential energy of a two-particle system based on the particle separation.
1-1. Mark the positions where the force between the particles equals zero.

2-1. Identify the range(s) of values where the force is positive.
$3-1$. Identify the range(s) of values where the force is negative.

4-2. Sketch the force on the graph at the right.
$5-2$. Identify the range(s) of values where the force is attractive.

6-2. Identify the range(s) of values where the force is repulsive.

7-3. If the total energy is E_{1}, identify the allowable separations.

8-3. If the total energy is E_{2}, identify the allowable separations.

9-3. If the total energy is E_{3}, identify the allowable separations.

10-4. Sketch the kinetic energy function for the situation if the total energy is E_{1}.

11-4. Sketch the kinetic energy function for the situation if the total energy is E_{2}.

12-4. Sketch the kinetic energy function for the situation if the total energy is E_{3}.

13-3. Identify turning points and points of equilibrium for each total energy given.

