# Quick review of select topics based on student inquiries 

-AP Phy C Mechanics

## Relative Velocity



Case 1 -
2 moving objects
compared to each other

Boat
River

Case 2 -
2 moving objects compared to one common medium


A large panel van has a velocity of $30 \mathrm{~m} / \mathrm{s}$ at $20^{\circ} \mathrm{S}$ of E in still air. A gust of wind of $20 \mathrm{~m} / \mathrm{s}$ due East relative to the Earth strikes the van. What is the resultant velocity of the van relative to the Earth, during the gust?


S

$$
\text { Ans : } 49.2 \mathrm{~m} / \mathrm{s} \quad 12^{\circ} \mathrm{S} \text { of } \mathrm{E}
$$

Go over step by step solution under Rel Vel review under today's classwork

## Forces - pay attention to directions



## Draw free body diagram (FBD) for every object in these arrangements

(assume friction exists on all interfaces )


## Circular motion



## Banking Problem



## W.E.T. (Work-Energy Theorem)

- The total work done on an object equals the change in the object's kinetic energy and/or gravitational potential energy.

$$
\begin{aligned}
& W_{\text {total }}=\Delta E_{K} \\
& W_{\text {total }}=E_{K 2}-E_{K 1} \\
& F \Delta \bar{d}=\frac{1}{2} m v_{2}^{2}-\frac{1}{2} m v_{1}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& W_{\text {total }}=\Delta E_{g} \\
& W_{\text {total }}=E_{g 2}-E_{g 1} \\
& F \Delta \bar{d}=m g h_{2}-m g h_{1}
\end{aligned}
$$

$$
\Delta \mathrm{E}_{\mathrm{k}}=-\Delta \mathrm{E}_{\mathrm{g}}
$$

## PE Curves



## $F=-$ (attractive) ; + (repulsive)

PE of a spring


## CoM and Momentum Conservation



Take derivative to get the velocity of the center of mass. ( second derivative for ac c)

- If CoM does not move because of NO external force, Momentum is Conserved.
- If CoM moves then Change in Momentum



## Rotation

- Constant angular acceleration equations
- Moment of Inertia
- point masses MR2
- several point masses add them all
$M_{1} R_{1}{ }^{2}+M_{2} R_{2}{ }^{2}+$ $\qquad$
- extended mass ( solid object - take integral)

Mass of
$I=\int_{-L / 2}^{L / 2} r^{2} \frac{M}{L} d r=\left.\frac{M}{L} \frac{r^{3}}{3}\right|_{-L / 2} ^{L / 2}=\frac{M}{3 L}\left[\frac{L^{3}}{8}-\frac{-L^{3}}{8}\right] \begin{aligned} & \text { inassom an } \\ & \text { intintesmal } \\ & \text { lengts } d r \\ & d m=\frac{M}{L} d r\end{aligned}$

$$
I_{c m}=\frac{1}{12} M L^{2}
$$

- Composite extended masses (eg: disk attached to cylidner) Add all the individual Moment of Inertias


## Rotation- most problems solved using $r x F=1 \alpha$

Newton's Second Law for Rotational Motion About a Fixed Axis


$$
\begin{aligned}
& \frac{\tau}{r}=m r \alpha \\
& \tau=I \alpha
\end{aligned}
$$

## Rolling

- Friction acts opposite to how the object wants to slide.



## Rolling - NSL

- Object rolling continues to roll unless there is opposing torque to decelerate and stop it.



## Gravitation

- Remember U at infinity $=0$
- So $U$ at any other position is negative
- ONLY for a circular orbit use
$\mathrm{mv}^{2} / \mathrm{r}=\mathrm{GMm} / \mathrm{r}^{2}$ which would give
TME $=\mathrm{K}+\mathrm{U}=-\mathrm{GMm} / 2 \mathrm{r}$
- Although one can generalize ( not necessarily using $\mathrm{mv}^{2} / r$ - no need to know the proof)

TME for elliptical =-GMm/2a

- To reach one orbit to another you need to do work done on the satellite
WD = Change in TME if placed on orbit and revolving. WD for just lifting to another level is $=-$ change is $U$ alone
- Escape velocity - escape from any gravitational effects of a planet
- Use conservation of $L$ to find velocity around elliptical.


## Oscillations

Remember for SHM you need restoring forces to bring the object back to equilibrium

- At Equilibrium Forces are balanced.

$$
\mathrm{K}=\mathrm{Max}, \mathrm{U}=0
$$

- At extremes $\mathrm{k}=0, \mathrm{U}=\max$

Start from Newton's 2nd law and bring it to SHM equation form, compare to find $w^{2}$. Then you should be able to find $T$, f, Max displacement etc. Do the worksheets again if in doubt.


## Statics

- Only 3 rules

$$
\begin{aligned}
& -\Sigma F_{x}=0 \\
& -\Sigma F_{y}=0 \\
& -\Sigma \tau=0
\end{aligned}
$$

- You can choose any pivot point for $\Sigma \tau=0$

But the point with most unknown forces makes the best choice.

